• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 245
  • 100
  • 22
  • 12
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 462
  • 462
  • 128
  • 118
  • 103
  • 87
  • 83
  • 80
  • 73
  • 65
  • 57
  • 53
  • 53
  • 50
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Multi-robot platooning in hostile environments

Shively, Jeremy 09 April 2012 (has links)
The purpose of this thesis is to develop a testing environment for mobile robot experiments, to examine methods for multi-robot platooning through hostile environments, and test these algorithms on mobile robots. Such a system will allow us to rapidly address and test problems that arise concerning robot swarms and consequent interactions. In order to create this hardware simulation environment a test bed will be created using ROS or Robot Operating System. This platform is highly modular and extensible for future development. Trajectory generation for the robots will use smoothing splines, B-splines, and A* search. Each method has distinct properties which will be analyzed and rated with respect to its effectiveness with regards to robotic platooning. A few issues to be considered include: Is the optimal path taken with respect to distance and threats? Is the formation of the robots maintained or compromised during traversal of the path? And finally, what sorts of compromises or additions are needed to make each method effective? This work will be helpful for choosing route planning methods in future work and will provide a large code base for rapid prototyping.
132

Modeling simulation and experimental validation of 'ATRV-JR.'

Chabukswar, Deviprasad M. Hollis, Patrick. January 2004 (has links)
Thesis (M.S.)--Florida State University, 2004. / Advisor: Dr. Patrick Hollis, Florida State University, College of Engineering, Dept. of Mechanical Engineering. Title and description from dissertation home page (viewed June 17, 2004). Includes bibliographical references.
133

Planned perception within concurrent mapping and localization /

Slavik, Michael P. January 1900 (has links)
Thesis (M.S. in Electrical Engineering and Computer Science)--Massachusetts Institute of Technology. / Includes bibliographical references (p. [127]-132). Also available online.
134

Visual place categorization

Wu, Jianxin. January 2009 (has links)
Thesis (Ph.D)--Computing, Georgia Institute of Technology, 2010. / Committee Chair: Rehg, James M.; Committee Member: Christensen, Henrik; Committee Member: Dellaert, Frank; Committee Member: Essa, Irfan; Committee Member: Malik, Jitendra. Part of the SMARTech Electronic Thesis and Dissertation Collection.
135

Optical flow templates for mobile robot environment understanding

Roberts, Richard Joseph William 08 June 2015 (has links)
In this work we develop optical flow templates. In doing so, we introduce a practical tool for inferring robot egomotion and semantic superpixel labeling using optical flow in imaging systems with arbitrary optics. In order to do this we develop valuable understanding of geometric relationships and mathematical methods that are useful in interpreting optical flow to the robotics and computer vision communities. This work is motivated by what we perceive as directions for advancing the current state of the art in obstacle detection and scene understanding for mobile robots. Specifically, many existing methods build 3D point clouds, which are not directly useful for autonomous navigation and require further processing. Both the step of building the point clouds and the later processing steps are challenging and computationally intensive. Additionally, many current methods require a calibrated camera, which introduces calibration challenges and places limitations on the types of camera optics that may be used. Wide-angle lenses, systems with mirrors, and multiple cameras all require different calibration models and can be difficult or impossible to calibrate at all. Finally, current pixel and superpixel obstacle labeling algorithms typically rely on image appearance. While image appearance is informative, image motion is a direct effect of the scene structure that determines whether a region of the environment is an obstacle. The egomotion estimation and obstacle labeling methods we develop here based on optical flow templates require very little computation per frame and do not require building point clouds. Additionally, they do not require any specific type of camera optics, nor a calibrated camera. Finally, they label obstacles using optical flow alone without image appearance. In this thesis we start with optical flow subspaces for egomotion estimation and detection of “motion anomalies”. We then extend this to multiple subspaces and develop mathematical reasoning to select between them, comprising optical flow templates. Using these we classify environment shapes and label superpixels. Finally, we show how performing all learning and inference directly from image spatio-temporal gradients greatly improves computation time and accuracy.
136

Creating and utilizing symbolic representations of spatial knowledge using mobile robots

Beeson, Patrick Foil, 1977- 04 September 2012 (has links)
A map is a description of an environment allowing an agent--a human, or in our case a mobile robot--to plan and perform effective actions. From a single location, an agent’s sensors can not observe the whole structure of a complex, large environment. For this reason, the agent must build a map from observations gathered over time and space. We distinguish between large-scale space, with spatial structure larger than the agent’s sensory horizon, and small-scale space, with structure within the sensory horizon. We propose a factored approach to mobile robot map-building that handles qualitatively different types of uncertainty by combining the strengths of topological and metrical approaches. Our framework is based on a computational model of the human cognitive map; thus it allows robust navigation and communication within several different spatial ontologies. Our approach factors the mapping problem into natural sub-goals: building a metrical representation for local small-scale spaces; finding a topological map that represents the qualitative structure of large-scale space; and (when necessary) constructing a metrical representation for large-scale space using the skeleton provided by the topological map. The core contributions of this thesis are a formal description of the Hybrid Spatial Semantic Hierarchy (HSSH), a framework for both small-scale and large-scale representations of space, and an implementation of the HSSH that allows a robot to ground the largescale concepts of place and path in a metrical model of the local surround. Given metrical models of the robot’s local surround, we argue that places at decision points in the world can be grounded by the use of a primitive called a gateway. Gateways separate different regions in space and have a natural description at intersections and in doorways. We provide an algorithmic definition of gateways, a theory of how they contribute to the description of paths and places, and practical uses of gateways in spatial mapping and learning. / text
137

DYNAMIC TERRAMECHANIC MODEL FOR LIGHTWEIGHT WHEELED MOBILE ROBOTS

Irani, Rishad 08 August 2011 (has links)
This doctoral thesis extends analytical terramechanic modelling for small lightweight mobile robots operating on sandy soil. Previous terramechanic models were designed to capture and predict the mean values of the forces and sinkage that a wheel may experience. However, these models do not capture the fluctuations in the forces and sinkage that were observed in experimental data. The model developed through the course of this research enhances existing terramechanic models by proposing and validating a new pressure-sinkage relationship. The resulting two-dimensional model was validated with a unique high fidelity single-wheel testbed (SWTB) which was installed on a Blohm Planomat 408 computer-numerically controlled creepfeed grinding machine. The new SWTB translates the terrain in the horizontal direction while the drivetrain and wheel support systems are constrained in the horizontal direction but allowed to freely move in the vertical direction. The design of the SWTB allowed for a counterbalance to be installed and, as a result, low normal loads could be examined. The design also took advantage of the grinding machine's high load capacity and precise velocity control. Experiments were carried out with the new SWTB and predictable repeating ridges were found in the track of a smooth rigid wheel operating in sandy soil. To ensure that these ridges were not an artifact of the new SWTB a mobile robot was used to validate the SWTB findings, which it did. The new SWTB is a viable method for investigating fundamental terramechanic issues. A series of experiments at different slip ratios and normal loads were carried out on the SWTB to validate the new pressure-sinkage relationship which explicitly captures and predicts the oscillations about the mean values for the forces and sinkage values for both a smooth wheel and a wheel with grousers. The new pressure-sinkage relationship adds two new dimensionless empirical factors to the well known pressure-sinkage relationship for a rigid wheel. The first new factor accounts for changes in the local density of the terrain around the wheel and the second factor accounts for the effects grousers have on the forces and sinkage.
138

Design of an autonomous mobile robot for service applications.

De Villiers, Mark. January 2011 (has links)
This research project proposes the development of an autonomous, omnidirectional vehicle that will be used for general indoor service applications. A suggested trial application for this service robot will be to deliver printouts to various network users in their offices. The robot will serve as a technology demonstrator and could later also be used for other tasks in an office, medical or industrial environment. The robot will use Mecanum wheels (also known as Swedish 45° or Ilon wheels) to achieve omnidirectionality. This will be especially useful in the often cramped target environments, because the vehicle effectively has a zero radius turning circle and is able to change direction of motion without changing its pose. Part of the research will also be to investigate a novel propulsion system based on the Mecanum wheel. The robot will form part of a portfolio of service robots that the Mechatronics and Micro Manufacturing (MMM) group at the CSIR is busy developing. Service robots are typically used to perform Dull, Dangerous or Dirty work, where human presence is not essential if the robot can perform the task reliably and successfully. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
139

Design and construction of Meercat : an autonomous indoor and outdoor courier service robot.

Bosscha, Peter Antoon. January 2011 (has links)
This project details the construction and development of, and experimentation with a mobile service courier robot named Meercat. This robot has been built from the ground up using parts sourced from various places. The application for this service robot is the delivery of internal mail parcels between the buildings situated on the campus of the Council for Scientific and Industrial Research (CSIR) in Pretoria. To achieve this, the robot has to be able to localise and navigate through indoor office and laboratory environments and over outdoor tarred roads which interconnect the various buildings. Not many robots are intended for operation in both indoor and outdoor environments, and to achieve this, multiple sensing systems are implemented on the platform, where the correct selection of sensing inputs is a key aspect. Further testing and experiments will take place with algorithms for localisation and navigation. As a limited budget was available for the development of this robot, cost-effective solutions had to be found for the mechanical, sensing and computation needs. The Mechatronics group from the Mechatronics and Micro Manufacturing (MMM) competency area at the CSIR is involved with the development of various autonomous mobile robots. The particular robot developed in this project will be an addition to the CSIR’s current fleet of robots and will be used as a stepping stone for experimentation with new sensors and electronics, and the development of further positioning and navigation algorithms. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2011.
140

Active acceleration compensation for transport of delicate objects

Decker, Michael Wilhelm 08 1900 (has links)
No description available.

Page generated in 0.0285 seconds