1 |
Fabrication and characterisation of a novel MOSFET gas sensor / Tillverkning och karaktärisering av en ny MOSFET-gassensorDalin, Johan January 2002 (has links)
A novel MOSFET gas sensor for the investigation has been developed. Its configuration resembles a"normally on"n-type thin-film transistor (TFT) with a gas sensitive metal oxide as a channel. The device used in the experiments only differs from common TFTs in the gate configuration. In order to allow gas reactions with the SnO2-surface, the gate is buried under the semiconducting layer. Without any gate voltage, the device works as a conventional metal oxide gas sensor. Applied gate voltages affect the channel carrier concentration and surface potential of the metal oxide, thus causing a change in sensitivity. The results of the gas measurements are in accordance with the electric adsorption effect, which was postulated by Fedor Wolkenstein 1957, and arises the possibility to operate a semiconductor gas sensor at relatively low temperatures and, thereby, be able to integrate CMOS electronics for processing of measurements at the same chip.
|
2 |
Fabrication and characterisation of a novel MOSFET gas sensor / Tillverkning och karaktärisering av en ny MOSFET-gassensorDalin, Johan January 2002 (has links)
<p>A novel MOSFET gas sensor for the investigation has been developed. Its configuration resembles a"normally on"n-type thin-film transistor (TFT) with a gas sensitive metal oxide as a channel. The device used in the experiments only differs from common TFTs in the gate configuration. In order to allow gas reactions with the SnO2-surface, the gate is buried under the semiconducting layer. Without any gate voltage, the device works as a conventional metal oxide gas sensor. Applied gate voltages affect the channel carrier concentration and surface potential of the metal oxide, thus causing a change in sensitivity. The results of the gas measurements are in accordance with the electric adsorption effect, which was postulated by Fedor Wolkenstein 1957, and arises the possibility to operate a semiconductor gas sensor at relatively low temperatures and, thereby, be able to integrate CMOS electronics for processing of measurements at the same chip.</p>
|
Page generated in 0.0471 seconds