• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human Facial Animation Based on Real Image Sequence

Yu, Yen-Chun 29 July 2000 (has links)
3D animation has developed rapidly in the multimedia nowadays, in computer games, virtual reality and films. Therefore, how to make a 3D model which is really true to life, especially in the facial expressions, and can have vivid actions, is a significant issue. At the present time, the methods to construct 3D facial model are divided into two categories: one is based on computer graphic technology, like geometric function, polygon, or simple geometric shapes, the other one is using hardware to measure a real face by laser scanning system, and three-dimensional digitizer. Moreover, the method to acquire the 3D facial expression primarily are applied as following: keyframing, motion capture, and simulation. The research covers two areas: 1. Use two CCDs to digitalize the facial expressions of a real person simultaneously from both right and left side, and save the obtained standard image. Then, get the feature match points from the two standard images in the space domain, and by using the Stereo to attain the ¡§depth information¡¨ which helps to build 3D facial model. 2. Use one CCD to continuously digitalize two facial expressions and get the feature match points¡¦ coordinates in the time domain to calculate the motion vector. By combining the ¡§depth information¡¨ from space domain and the motion vector from the time domain, the 3D facial model¡¦s motion sequence can be therefore obtained. If sufficient digitalized facial expressions are processed by the 3D facial model¡¦s motion sequence, a database could be built. By matching the feature points between the 2D test image and 2D standard image in the database, the standard image¡¦s ¡§depth information¡¨ and motion vector can be used and turn the test image into 3D model which can also imitate the facial expressions of the standard images sequences. The method to match the feature points between the test image and standard images in the database can be entirely processed by computers, and as a result eliminate unnecessary human resources.
2

Video Surveillance: Activities in a Cell Area

Thummanapalli, Shashidhar Rao, Kotla, Savarkar January 2015 (has links)
Considering todays growing society and developing technologies which are co-influential between each other, there is a larger scope of security concerns, traffic congestion due to improper planning and hence a greater need of more intelligent video surveillance. In this thesis, we have worked on developing such intelligent video surveillance system which mainly focusses on cell area such as parking spaces. The system operates on outdoor environment with a stationary camera; the main objective of this system is detecting and tracking of moving objects mainly cars. Two detection algorithms were developed using optical flow as core strategy. In the first algorithm the flow vectors were classified based on their magnitude and orientation; the GOMAG algorithm. The second algorithm used K-means method on the flow vectors to achieve the classification for moving object detection; the SKMO algorithm. A comparison analysis was done between the proposed algorithms and well known detection algorithms of background modeling and Otsu’s segmentation of flow vectors. The both proposed algorithms performed significantly better than background modeling and Otsu’s segmentation of flow vectors algorithms. The SKMO algorithm showed better stability and processed time efficiency than the GOMAG algorithm.
3

Using Motion Fields to Estimate Video Utility and Detect GPS Spoofing

Carroll, Brandon T. 08 August 2012 (has links) (PDF)
This work explores two areas of research. The first is the development of a video utility metric for use in aerial surveillance and reconnaissance tasks. To our knowledge, metrics that compute how useful aerial video is to a human in the context of performing tasks like detection, recognition, or identification (DRI) do not exist. However, the Targeting Task Performance (TTP) metric was previously developed to estimate the usefulness of still images for DRI tasks. We modify and extend the TTP metric to create a similar metric for video, called Video Targeting Task Performance (VTTP). The VTTP metric accounts for various things like the amount of lighting, motion blur, human vision, and the size of an object in the image. VTTP can also be predictively calculated to estimate the utility that a proposed flight path will yield. This allows it to be used to help automate path planning so that operators are able to devote more of their attention to DRI. We have used the metric to plan and fly actual paths. We also carried out a small user study that verified that VTTP correlates with subjective human assessment of video. The second area of research explores a new method of detecting GPS spoofing on an unmanned aerial system (UAS) equipped with a camera and a terrain elevation map. Spoofing allows an attacker to remotely tamper with the position, time, and velocity readings output by a GPS receiver. This tampering can throw off the UAS's state estimates, but the optical flow through the camera still depends on the actual movement of the UAS. We develop a method of detecting spoofing by calculating the expected optical flow based on the state estimates and comparing it against the actual optical flow. If the UAS is successfully spoofed to a different location, then the detector can also be triggered by differences in the terrain between where the UAS actually is and where it thinks it is. We tested the spoofing detector in simulation, and found that it works well in some scenarios.
4

Directional analysis of cardiac left ventricular motion from PET images. / Análise direcional do movimento do ventrículo esquerdo cardíaco a partir de imagens de PET.

Sims, John Andrew 28 June 2017 (has links)
Quantification of cardiac left ventricular (LV) motion from medical images provides a non-invasive method for diagnosing cardiovascular disease (CVD). The proposed study continues our group\'s line of research in quantification of LV motion by applying optical flow (OF) techniques to quantify LV motion in gated Rubidium Chloride-82Rb (82Rb) and Fluorodeoxyglucose-18F (FDG) PET image sequences. The following challenges arise from this work: (i) the motion vector field (MVF) should be made as accurate as possible to maximise sensitivity and specificity; (ii) the MVF is large and composed of 3D vectors in 3D space, making visual extraction of information for medical diagnosis dffcult by human observers. Approaches to improve the accuracy of motion quantification were developed. While the volume of interest is the region of the MVF corresponding to the LV myocardium, non-zero values of motion exist outside this volume due to artefacts in the motion detection method or from neighbouring structures, such as the right ventricle. Improvements in accuracy can be obtained by segmenting the LV and setting the MVF to zero outside the LV. The LV myocardium was automatically segmented in short-axis slices using the Hough circle transform to provide an initialisation to the distance regularised level set evolution algorithm. Our segmentation method attained Dice similarity measure of 93.43% when tested over 395 FDG slices, compared with manual segmentation. Strategies for improving OF performance at motion boundaries were investigated using spatially varying averaging filters, applied to synthetic image sequences. Results showed improvements in motion quantification accuracy using these methods. Kinetic Energy Index (KEf), an indicator of cardiac motility, was used to assess 63 individuals with normal and altered/low cardiac function from a 82Rb PET image database. Sensitivity and specificity tests were performed to evaluate the potential of KEf as a classifier of cardiac function, using LV ejection fraction as gold standard. A receiver operating characteristics curve was constructed, which provided an area under the curve of 0.906. Analysis of LV motion can be simplified by visualisation of directional motion field components, namely radial, rotational (or circumferential) and linear, obtained through automated decomposition. The Discrete Helmholtz Hodge Decomposition (DHHD) was used to generate these components in an automated manner, with a validation performed using synthetic cardiac motion fields from the Extended Cardiac Torso phantom. Finally, the DHHD was applied to OF fields from gated FDG images, allowing an analysis of directional components from an individual with normal cardiac function and a patient with low function and a pacemaker fitted. Motion field quantification from PET images allows the development of new indicators to diagnose CVDs. The ability of these motility indicators depends on the accuracy of the quantification of movement, which in turn can be determined by characteristics of the input images, such as noise. Motion analysis provides a promising and unprecedented approach to the diagnosis of CVDs. / A quantificação do movimento cardíaco do ventrículo esquerdo (VE) a partir de imagens médicas fornece um método não invasivo para o diagnóstico de doenças cardiovasculares (DCV). O estudo aqui proposto continua na mesma linha de pesquisa do nosso grupo sobre quantificação do movimento do VE por meio de técnicas de fluxo óptico (FO), aplicando estes métodos para quantificar o movimento do VE em sequências de imagens associadas às substâncias de cloreto de rubídio-82Rb (82Rb) e fluorodeoxiglucose-18F (FDG) PET. Com a extração dos campos vetoriais surgiram os seguintes desafios: (i) o campo vetorial de movimento (motion vector field, MVF) deve ser feito da forma mais precisa possível para maximizar a sensibilidade e especificidade; (ii) o MVF é extenso e composto de vetores 3D no espaço 3D, dificultando a análise visual de informações por observadores humanos para o diagnóstico médico. Foram desenvolvidas abordagens para melhorar a precisão da quantificação de movimento, considerando que o volume de interesse seja a região do MVF correspondente ao miocárdio do VE, em que valores de movimento não nulos existem fora deste volume devido aos artefatos do método de detecção de movimento ou de estruturas vizinhas, como o ventrículo direito. As melhorias na precisão foram obtidas segmentando o VE e ajustando os valores de MVF para zero fora do VE. O miocárdio VE foi segmentado automaticamente em fatias de eixo curto usando a Transformada de Hough na detecção de círculos para fornecer uma inicialização ao algoritmo de curvas de nível, um tipo de modelo deformável. A segmentação automática do VE atingiu 93,43% de medida de similaridade Dice, quando foi testado em 395 fatias de eixo menor de FDG, comparado com a segmentação manual. Estratégias para melhorar o desempenho do algoritmo OF nas bordas de movimento foram investigadas usando spatially varying averaging filters, aplicados em seqüências de imagens sintéticas. Os resultados mostraram melhorias na precisão de quantificação de movimento utilizando estes métodos. O Índice de Energia Cinética (KEf), um indicador de motilidade cardíaca, foi utilizado para avaliar 63 sujeitos com função cardíaca normal e alterada / baixa de uma base de dados de imagens PET de 82Rb. Foram realizados testes de sensibilidade e especificidade para avaliar o potencial de KEf para classificar a função cardíaca, utilizando a fração de ejeção do VE como padrão ouro. Foi construída uma curva ROC, que proporcionou uma área sob a curva de 0,906. A análise do movimento do VE pode ser simplificada pela visualização de componentes de campo de movimento direcional, ou seja, radial, rotacional (ou circunferencial) e linear, obtidos por decomposição automatizada. A decomposição discreta de Helmholtz Hodge (DHHD) foi utilizada para gerar estes componentes de forma automatizada, com uma validação utilizando campos de movimento cardíaco sintéticos a partir do conjunto Extended Cardiac Torso Phantom. Finalmente, o método DHHD foi aplicado a campos de FO, criado a partir de imagens FDG, permitindo uma análise de componentes direcionais de um indivíduo com função cardíaca normal e um paciente com baixa função e utilizando um marca-passo. A quantificação do campo de movimento a partir de imagens PET possibilita o desenvolvimento de novos indicadores para diagnosticar DCVs. A capacidade destes indicadores de motilidade depende na precisão da quantificação de movimento que, por sua vez, pode ser determinado por características das imagens de entrada como ruído. A análise de movimento fornece um promissor e sem precedente método para o diagnóstico de DCVs.
5

Directional analysis of cardiac left ventricular motion from PET images. / Análise direcional do movimento do ventrículo esquerdo cardíaco a partir de imagens de PET.

John Andrew Sims 28 June 2017 (has links)
Quantification of cardiac left ventricular (LV) motion from medical images provides a non-invasive method for diagnosing cardiovascular disease (CVD). The proposed study continues our group\'s line of research in quantification of LV motion by applying optical flow (OF) techniques to quantify LV motion in gated Rubidium Chloride-82Rb (82Rb) and Fluorodeoxyglucose-18F (FDG) PET image sequences. The following challenges arise from this work: (i) the motion vector field (MVF) should be made as accurate as possible to maximise sensitivity and specificity; (ii) the MVF is large and composed of 3D vectors in 3D space, making visual extraction of information for medical diagnosis dffcult by human observers. Approaches to improve the accuracy of motion quantification were developed. While the volume of interest is the region of the MVF corresponding to the LV myocardium, non-zero values of motion exist outside this volume due to artefacts in the motion detection method or from neighbouring structures, such as the right ventricle. Improvements in accuracy can be obtained by segmenting the LV and setting the MVF to zero outside the LV. The LV myocardium was automatically segmented in short-axis slices using the Hough circle transform to provide an initialisation to the distance regularised level set evolution algorithm. Our segmentation method attained Dice similarity measure of 93.43% when tested over 395 FDG slices, compared with manual segmentation. Strategies for improving OF performance at motion boundaries were investigated using spatially varying averaging filters, applied to synthetic image sequences. Results showed improvements in motion quantification accuracy using these methods. Kinetic Energy Index (KEf), an indicator of cardiac motility, was used to assess 63 individuals with normal and altered/low cardiac function from a 82Rb PET image database. Sensitivity and specificity tests were performed to evaluate the potential of KEf as a classifier of cardiac function, using LV ejection fraction as gold standard. A receiver operating characteristics curve was constructed, which provided an area under the curve of 0.906. Analysis of LV motion can be simplified by visualisation of directional motion field components, namely radial, rotational (or circumferential) and linear, obtained through automated decomposition. The Discrete Helmholtz Hodge Decomposition (DHHD) was used to generate these components in an automated manner, with a validation performed using synthetic cardiac motion fields from the Extended Cardiac Torso phantom. Finally, the DHHD was applied to OF fields from gated FDG images, allowing an analysis of directional components from an individual with normal cardiac function and a patient with low function and a pacemaker fitted. Motion field quantification from PET images allows the development of new indicators to diagnose CVDs. The ability of these motility indicators depends on the accuracy of the quantification of movement, which in turn can be determined by characteristics of the input images, such as noise. Motion analysis provides a promising and unprecedented approach to the diagnosis of CVDs. / A quantificação do movimento cardíaco do ventrículo esquerdo (VE) a partir de imagens médicas fornece um método não invasivo para o diagnóstico de doenças cardiovasculares (DCV). O estudo aqui proposto continua na mesma linha de pesquisa do nosso grupo sobre quantificação do movimento do VE por meio de técnicas de fluxo óptico (FO), aplicando estes métodos para quantificar o movimento do VE em sequências de imagens associadas às substâncias de cloreto de rubídio-82Rb (82Rb) e fluorodeoxiglucose-18F (FDG) PET. Com a extração dos campos vetoriais surgiram os seguintes desafios: (i) o campo vetorial de movimento (motion vector field, MVF) deve ser feito da forma mais precisa possível para maximizar a sensibilidade e especificidade; (ii) o MVF é extenso e composto de vetores 3D no espaço 3D, dificultando a análise visual de informações por observadores humanos para o diagnóstico médico. Foram desenvolvidas abordagens para melhorar a precisão da quantificação de movimento, considerando que o volume de interesse seja a região do MVF correspondente ao miocárdio do VE, em que valores de movimento não nulos existem fora deste volume devido aos artefatos do método de detecção de movimento ou de estruturas vizinhas, como o ventrículo direito. As melhorias na precisão foram obtidas segmentando o VE e ajustando os valores de MVF para zero fora do VE. O miocárdio VE foi segmentado automaticamente em fatias de eixo curto usando a Transformada de Hough na detecção de círculos para fornecer uma inicialização ao algoritmo de curvas de nível, um tipo de modelo deformável. A segmentação automática do VE atingiu 93,43% de medida de similaridade Dice, quando foi testado em 395 fatias de eixo menor de FDG, comparado com a segmentação manual. Estratégias para melhorar o desempenho do algoritmo OF nas bordas de movimento foram investigadas usando spatially varying averaging filters, aplicados em seqüências de imagens sintéticas. Os resultados mostraram melhorias na precisão de quantificação de movimento utilizando estes métodos. O Índice de Energia Cinética (KEf), um indicador de motilidade cardíaca, foi utilizado para avaliar 63 sujeitos com função cardíaca normal e alterada / baixa de uma base de dados de imagens PET de 82Rb. Foram realizados testes de sensibilidade e especificidade para avaliar o potencial de KEf para classificar a função cardíaca, utilizando a fração de ejeção do VE como padrão ouro. Foi construída uma curva ROC, que proporcionou uma área sob a curva de 0,906. A análise do movimento do VE pode ser simplificada pela visualização de componentes de campo de movimento direcional, ou seja, radial, rotacional (ou circunferencial) e linear, obtidos por decomposição automatizada. A decomposição discreta de Helmholtz Hodge (DHHD) foi utilizada para gerar estes componentes de forma automatizada, com uma validação utilizando campos de movimento cardíaco sintéticos a partir do conjunto Extended Cardiac Torso Phantom. Finalmente, o método DHHD foi aplicado a campos de FO, criado a partir de imagens FDG, permitindo uma análise de componentes direcionais de um indivíduo com função cardíaca normal e um paciente com baixa função e utilizando um marca-passo. A quantificação do campo de movimento a partir de imagens PET possibilita o desenvolvimento de novos indicadores para diagnosticar DCVs. A capacidade destes indicadores de motilidade depende na precisão da quantificação de movimento que, por sua vez, pode ser determinado por características das imagens de entrada como ruído. A análise de movimento fornece um promissor e sem precedente método para o diagnóstico de DCVs.
6

Obstacle detection using a monocular camera

Goroshin, Rostislav 19 May 2008 (has links)
The objective of this thesis is to develop a general obstacle segmentation algorithm for use on board a ground based unmanned vehicle (GUV). The algorithm processes video data captured by a single monocular camera mounted on the GUV. We make the assumption that the GUV moves on a locally planar surface, representing the ground plane. We start by deriving the equations of the expected motion field (observed by the camera) induced by the motion of the robot on the ground plane. Given an initial view of a presumably static scene, this motion field is used to generate a predicted view of the same scene after a known camera displacement. This predicted image is compared to the actual image taken at the new camera location by means of an optical flow calculation. Because the planar assumption is used to generate the predicted image, portions of the image which mismatch the prediction correspond to salient feature points on objects which lie above or below the ground plane, we consider these objects obstacles for the GUV. We assume that these salient feature points (called seed pixels ) capture the color statistics of the obstacle and use them to initialize a Bayesian region growing routine to generate a full obstacle segmentation. Alignment of the seed pixels with the obstacle is not guaranteed due to the aperture problem, however successful segmentations were obtained for natural scenes. The algorithm was tested off line using video captured by a camera mounted on a GUV.

Page generated in 0.0263 seconds