• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 5
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 45
  • 20
  • 17
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Role of electrical and mixed synapses in the modulation of spinal cord sensory reflexes

Bautista Guzman, Wendy Diana 21 May 2012 (has links)
The first part of my thesis involves an investigation into mechanisms underlying the presynaptic regulation of transmitter release from myelinated hindlimb sensory afferents in rodents. The central hypothesis is that in addition to chemical transmission in spinal neuronal networks, electrical synapses formed by connexins are critically involved in presynaptic inhibition of large diameter sensory afferents. Subsequent sections of the thesis present a detailed examination of the distribution of connexins in the rodent spinal cord with a particular emphasis on the neuronal connexin, Cx36. Connexin36 (Cx36) is widely believed to be the protein forming the neuronal gap junctions that create electrical synapses between mammalian neurons in many areas of the central nervous system (Condorelli et al 1998). The first part of thesis concerns a previously unknown role of neuronal connexins in interneurone pathways involved in presynaptic control of synaptic transmission in the lumbar spinal cord of rodents. As far as we are aware, the idea that electrical contacts between spinal neurons contribute to spinal presynaptic inhibition is a novel hypothesis. Evidence will be presented: 1) that Cx36 is present in regions of the spinal cord containing interneurons involved in presynaptic inhibition, 2) that the lack of Cx36 in Cx36-/- knockouts mice results in a severe impairment of presynaptic inhibition, and 3) that blocking gap junctions pharmacologically in wild type mice impairs presynaptic inhibition. The exploration of this hypothesis will involve a combination of electrophysiological and immunohistochemical approaches in juvenile wild-type and knockout mice lacking Cx36, as well as immunohistochemical observations in adult rodents. This first section of the thesis begins with the development of a preparation in which several measures of presynaptic inhibition described in the in vivo adult cat preparation can be examined in vitro in young mice. The following sections of the thesis describe the distribution and features of Cx36 on neurons in mice and rats of different ages in four parts. The first will show that Cx36 is the only connexin associated with spinal neurons and refutes claims in the literature about the existence of a variety of connexions on spinal neurons. The second part will show that while gap junctions between some spinal neurons are only a transient developmental phenomenon, they persist in abundance in adult animals. The third part will present evidence of a previously unsuspected III association of Cx36 gap junctions at the chemical synapse between muscle afferent fibres and motoneurons. Specifically, an association between Cx36 and the glutamate transporter used in primary afferents, Vglut1 will be described. To our knowledge these results are the first to suggest the existence of mixed (electrical and chemical) synapses between primary afferents and motoneurons in the mature mammalian spinal cord. The final part of the thesis will describe the presence of Cx36 gap junctions on adult sacral motoneurons involved in control of sexual, urinary and defecation functions in the rodent.
32

Cholinergic terminals and receptors in the lumbosacral spinal cord of adult and neonatal rat

Ralcewicz, Karen Lynn 27 January 2006 (has links)
Cholinergic input to, and cholinergic mechanisms within the lower lumbar (L6) and upper sacral (S1) spinal cord of rat may influence neuronal excitability and afferent transmission (Thor et al, 2000) and may provide the environment necessary for appropriate central nervous system control of bladder and bowel function. It is unclear, however, if cholinergic terminals and receptors are present in the L6 & S1 spinal segments of rat and when this may develop. Cholinergic mechanisms have been shown to alter sensory afferent transmission, enhance motoneuron excitability, induce plateau potentials via non-linear membrane properties in motoneurons and reveal oscillations in locomotor-related interneurons. The enhanced activity of sphincter motoneurons was attributed to non-linear properties during the continence phase of distention-evoked voiding in the decerebrate cat (Paroschy & Shefchyk, 2000). Candidate neurotransmitters inducing non-linear properties in cat sphincter motoneurons are 5-HT (Paroschy & Shefchyk, 2000) and acetylcholine via motoneuron axon collaterals (Sasaki, 1994) and other spinal sources. We have established using the antibody to the vesicular acetylcholine transporter (VAChT) that cholinergic terminals are present on ventrolateral Onuf (VLO), dorsomedial Onuf (DMO) motoneurons and parasympathetic preganglionic motoneurons (PGN) in the L6 and S1 rat spinal cord segments. Muscarinic receptor (M2), nicotinic-α4 and α7 receptor subunit immunoreactivity was also present on Onuf motoneurons and in regions dorsal to the PGN. One source of the cholinergic puncta on Onuf motoneurons may be from motoneuron axon collaterals which we observed on a postnatal day 15 VLO motoneuron. Cholinergic terminals were observed on vasoactive intestinal polypeptide-immunoreactive (VIP) afferents, interneurons in the intermediolateral (IML) region and perhaps on other afferents in the lateral and medial collateral pathway of L6 and S1 spinal segments. In the ventral horn, the cholinergic puncta and receptors appear to have a mature distribution around two weeks postnatal and the cholinergic terminals appeared to have a mature distribution in the IML region by three weeks postnatal. Using whole cell patch clamp recording techniques and thick slices of the L6 and S1 rat spinal cord, we observed excitatory responses of ventral horn neurons and motoneurons to carbachol (10-50 μM), a non-specific cholinergic agonist. Ventral horn neurons (postnatal day 8- 16) exhibited prolonged firing and prolonged depolarizations (plateau potentials) beyond the duration of the applied excitatory input from cholinergic (n=6/33) and other (n= 4/37) neurotransmitter systems. In a selection of the neurons with plateau potentials, the L-type calcium current played a role in the plateau production (n=5/5) and low frequency oscillations (n=2/2) as revealed by nifedipine. Postnatally, the voiding reflex changes from a perineal-evoked reflex, to the adult bladder-bladder reflex. Cholinergic input may be responsible in part for the bursting activity of the external urethral sphincter and the activation of the bladder, which is required for complete voiding reflexes in the adult rat. Plateau potentials and enhanced excitability due to cholinergic mechanisms could render inessential a constant excitatory drive that is required in the perineal-evoked voiding reflex in the neonatal rat and may underlie changes in the voiding reflexes that occur during postnatal development.
33

Cholinergic terminals and receptors in the lumbosacral spinal cord of adult and neonatal rat

Ralcewicz, Karen Lynn 27 January 2006 (has links)
Cholinergic input to, and cholinergic mechanisms within the lower lumbar (L6) and upper sacral (S1) spinal cord of rat may influence neuronal excitability and afferent transmission (Thor et al, 2000) and may provide the environment necessary for appropriate central nervous system control of bladder and bowel function. It is unclear, however, if cholinergic terminals and receptors are present in the L6 & S1 spinal segments of rat and when this may develop. Cholinergic mechanisms have been shown to alter sensory afferent transmission, enhance motoneuron excitability, induce plateau potentials via non-linear membrane properties in motoneurons and reveal oscillations in locomotor-related interneurons. The enhanced activity of sphincter motoneurons was attributed to non-linear properties during the continence phase of distention-evoked voiding in the decerebrate cat (Paroschy & Shefchyk, 2000). Candidate neurotransmitters inducing non-linear properties in cat sphincter motoneurons are 5-HT (Paroschy & Shefchyk, 2000) and acetylcholine via motoneuron axon collaterals (Sasaki, 1994) and other spinal sources. We have established using the antibody to the vesicular acetylcholine transporter (VAChT) that cholinergic terminals are present on ventrolateral Onuf (VLO), dorsomedial Onuf (DMO) motoneurons and parasympathetic preganglionic motoneurons (PGN) in the L6 and S1 rat spinal cord segments. Muscarinic receptor (M2), nicotinic-α4 and α7 receptor subunit immunoreactivity was also present on Onuf motoneurons and in regions dorsal to the PGN. One source of the cholinergic puncta on Onuf motoneurons may be from motoneuron axon collaterals which we observed on a postnatal day 15 VLO motoneuron. Cholinergic terminals were observed on vasoactive intestinal polypeptide-immunoreactive (VIP) afferents, interneurons in the intermediolateral (IML) region and perhaps on other afferents in the lateral and medial collateral pathway of L6 and S1 spinal segments. In the ventral horn, the cholinergic puncta and receptors appear to have a mature distribution around two weeks postnatal and the cholinergic terminals appeared to have a mature distribution in the IML region by three weeks postnatal. Using whole cell patch clamp recording techniques and thick slices of the L6 and S1 rat spinal cord, we observed excitatory responses of ventral horn neurons and motoneurons to carbachol (10-50 μM), a non-specific cholinergic agonist. Ventral horn neurons (postnatal day 8- 16) exhibited prolonged firing and prolonged depolarizations (plateau potentials) beyond the duration of the applied excitatory input from cholinergic (n=6/33) and other (n= 4/37) neurotransmitter systems. In a selection of the neurons with plateau potentials, the L-type calcium current played a role in the plateau production (n=5/5) and low frequency oscillations (n=2/2) as revealed by nifedipine. Postnatally, the voiding reflex changes from a perineal-evoked reflex, to the adult bladder-bladder reflex. Cholinergic input may be responsible in part for the bursting activity of the external urethral sphincter and the activation of the bladder, which is required for complete voiding reflexes in the adult rat. Plateau potentials and enhanced excitability due to cholinergic mechanisms could render inessential a constant excitatory drive that is required in the perineal-evoked voiding reflex in the neonatal rat and may underlie changes in the voiding reflexes that occur during postnatal development.
34

Décryptage du réseau neuronal responsable de l’atonie musculaire pendant le sommeil paradoxal chez le rat : création d’un modèle rongeur du RBD (REM sleep Behavior Disorder) / Neuronal network of paradoxical sleep muscle atonia : a pre-requirement in the creation of a RBD (REM sleep Behavior Disorder) rodent model

Valencia Garcia, Sara 04 December 2014 (has links)
Les circuits neuronaux responsables du sommeil paradoxal (SP) et de l'atonie musculaire qui le caractéristique sont l'objet de nombreuses recherches expérimentales, notamment en raison de l'existence de plusieurs pathologies invalidantes associées. Cette thèse de Neurobiologie s'inscrit plus spécifiquement dans la description anatomique et fonctionnelle du réseau neuronal responsable de l'atonie musculaire et son potentiel dysfonctionnement dans les troubles comportementaux en SP (RBD, REM sleep Behavior Disorder). Pour ce faire, nous avons combiné plusieurs techniques faisant appel à la neuroanatomie fonctionnelle, au traçage rétrograde de voies nerveuses, à l'hybridation in situ à la polysomnographie et à l'inactivation irréversible de populations neuronales ciblées moléculairement à l'aide de virus adéno-associés contenant des short hairpin RNAs (AAV-shRNA) chez le rat libre de ses mouvements. Nous avons ainsi montré que, contrairement à l'hypothèse généralement admise, le noyau sublatérodorsal pontique (SLD) n'est pas le générateur du SP. En effet, l'inactivation neurochimique de ses neurones glutamatergiques ou sa lésion totale diminuent les quantités de SP sans le supprimer, indiquant que le SLD n'est pas suffisant pour la genèse du SP. En revanche, ces expériences démontrent son implication directe dans la mise en place de l'atonie musculaire lors du SP. En effet, la déconnexion neurochimique des neurones glutamatergiques du SLD provoque pendant le SP l'apparition intermittente de tonus musculaire accompagné de comportements moteurs anormaux. En parallèle, nos travaux de thèse ont permis d'apporter des données expérimentales nouvelles sur la localisation, au sein de la formation réticulée bulbaire ventrale et non dans la moelle épinière, des interneurones GABA/glycine responsables de l'hyperpolarisation des motoneurones somatiques pendant le SP. En effet, ces neurones réticulaires sont exclusivement recrutés pendant le SP et envoient des projections monosynaptiques inhibitrices vers les motoneurones somatiques lombaires. De plus, leur déconnexion neurochimique ciblée déclenche des comportements moteurs anormaux sous-tendus par le maintien d'un tonus musculaire irrégulier pendant le SP. L'analyse actimétrique de ces comportements moteurs oniriques induits expérimentalement montre qu'ils sont très semblables à ceux observés après l'inactivation du SLD et à ceux décrits chez les patients RBD. Les données rapportées dans cette thèse permettent de mieux comprendre les mécanismes neurobiologiques générant le SP et ceux contribuant au contrôle moteur pendant le SP. Par la même occasion, nos travaux ont permis de valider deux modèles rongeurs du RBD humain, ouvrant ainsi des perspectives expérimentales pour l'élaboration de traitements ciblés de cette pathologie affectant le SP / A growing number of studies investigate the neuronal network responsible for paradoxical (PS) (or REM) sleep genesis and muscle atonia specific of this sleep state. The aim of this thesis was to characterize at the anatomical and functional levels the populations of neurons involved in generating muscle atonia during PS and their potential failure in REM sleep Behavior Disorder (RBD). For this purpose, we combined a large panel of experimental techniques such as functional neuroanatomy, retrograde tract-tracing, in situ hybridization, polysomnography and irreversible inactivation of genetically-targeted neurons with short-hairpin RNAs introduced in viral adenovectors (AAV-shRNA) in freely moving rats. We thus demonstrated for the first time that, in contrast to the currently admitted hypothesis, the pontine sublaterodorsal nucleus (SLD) is not the PS generator, since genetic inactivation of its glutamatergic neurons or its whole lesion diminish the quantities of but do not eliminate PS. This indicates that the SLD is not sufficient for PS generation. In contrast, our experiments clearly show that the SLD is responsible for muscle atonia because the specific inactivation of its glutamatergic neurons induces an irregular muscle tone concomitant to atypical motor behaviors during PS. In addition, we achieved original data about the location within the ventral medullary reticular formation, and not at spinal levels as often believed, of the glycine/GABA interneurons managing the sustained hyperpolarization of somatic motoneurons during PS. We indeed observed that these medullary neurons are selectively recruited during PS and send monosynaptic inhibitory efferents to the lumbar somatic motoneurons. Furthermore, their genetic inactivation is followed by an increase of abnormal motor behaviors underpinned by a sustained, although irregular, muscle tone. The actimetric analysis of these oneiric experimentally induced behaviors reveals that they are very similar to those observed after SLD inactivation or those reported in RBD patients. Taken together, data harvested during this Thesis help us to better understand the complex neurobiological mechanisms generating PS or specifically contributing to the control of the motor system during PS. At the same time, we validated two rodent models closely mimicking human RBD and thus opening new research fields for the development of targeted treatments for this pathology affecting REM sleep
35

Urotensin II-Immunoreactivity in the Brainstem and Spinal Cord of the Rat

Dun, S. L., Brailoiu, G. C., Yang, J., Chang, J. K., Dun, N. J. 01 June 2001 (has links)
The distribution of urotensin-II-immunoreactivity (irU-II) was studied in the rat brainstem and spinal cord with the use of an antiserum against the human urotensin II (U-II) peptide. A population of ventral horn neurons in the spinal cord, hypoglossal nucleus, dorsal motor nucleus of the vagus, facial motor nucleus, nucleus ambiguus, abducens nucleus and trigeminal motor nucleus exhibited irU-II of varying intensities. The number of irU-II motor neurons was higher in the lumbar segments as compared to that of cervical, thoracic and sacral segments. Double-labeling the sections with U-II- and choline acetyltransferase (ChAT)-antisera revealed that nearly all irU-II ventral horn and brainstem neurons were ChAT-positive. The result provides the first immunohistochemical evidence of the presence of irU-II in cholinergic motoneurons of the rat spinal cord and brainstem.
36

Investigating the Role of an SK Channel Activator on Survival and Motor Function in the SOD1-G93A, ALS Mouse Model

Dancy, Matthew Thomas 23 May 2017 (has links)
No description available.
37

HCN1 Immunoreactivity of α-motoneurons Following Peripheral Nerve Injury

Ahmed, Saif 12 July 2012 (has links)
No description available.
38

Zytosolisches Calcium in murinen Hirnstamm-Motoneuronen wird differenziert von Mitochondrien reguliert / The Mitochondrial Role in Calcium Metabolism and Differential Calcium Buffering Capacity of Amyotrophic Lateral Sclerosis (ALS) Vulnerable and Resistant Motoneurons from Mice

Balakrishnan, Saju 02 May 2006 (has links)
No description available.
39

Expressão do MHC classe I e sua Influencia sobre as alterações sinaptologicas em camundongos de diferentes linhagens isogenicas, 1 e 3 semanas após a transecção do nervo ciatico / Expression of MHC class I influences synaptological changes in different isogenic mice strains, 1 and 3 weeks after sciatic nerve transection

Sabha Junior, Mario Jose Jorge 19 January 2007 (has links)
Orientador: Alexandre Leite Rodrigues de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-08T03:01:25Z (GMT). No. of bitstreams: 1 SabhaJunior_MarioJoseJorge_D.pdf: 14971588 bytes, checksum: 25740c7d964d2a5c4eb70c84cb462b08 (MD5) Previous issue date: 2007 / Resumo: o estabelecimento das redes nervosas que compõem o Sistema Nervoso Central (SNC) é um processo imensamente complexo dependente, não somente da formação de novos pontos de comunicação, as sinapses, mas também da eliminação de sinapses supranumerárias ou incorretas durante o desenvolvimento. Recentemente, foi descrito um mecanismo demonstrando que a ausência da expressão do complexo de histocompatibilidade principal (MHC classe I) no SNC, diminui a remoção de conexões sinápticas extranumerárias durante o desenvolvimento e aumenta a retração sináptica no animal adulto. Interessantemente, a transecção do axônio induz uma extensa retração dos terminais pré-sinápticos da superfície do corpo celular e dendritos dos neurônios axotomizados. No presente trabalho, investigamos as alterações sinaptológicas nos motoneurônios alfa da intumescência lombar em três linhagens de camundongos isogênicos (C57BL/6J, A/J e Balb/cJ), após 1 e 3 semanas da transecção do nervo ciático. Nesse sentido, estudamos a cobertura sináptica dos corpos celulares dos motoneurônios após a lesão. Foram utilizadas medulas espinhais de camundongos machos adultos, as quais foram processadas e analisadas para imunohistoquímica (lH) e microscopia eletrônica de transmissão . (MET). Para IH, foram utilizados anticorpos anti-MHC e anti-sinaptofisina conjugados com anticorpos secundários CY-2 ou CY-3 e analisados em microscópio confocal. Os resultados mostraram aumento significativo da expressão de MHC I na linhagem AIJ, comparativamente à Balb/cJ e C57BL/6J, 1 semana após axotomia. Contudo, mostraram níveis similares de expressão desta molécula 3 semanas após axotomia. Adicionalmente, observamos uma diminuição significativa da expressão de sinaptofisina na linhagem AIJ, após 1 semana da transecção do nervo ciático. Após 3 semanas da lesão nervosa, todas as linhagens, apresentaram níveis similares de expressão de sinaptofisina. Os resultados da MET, após 1 semana da transecção do nervo ciático, mostraram menor cobertura sináptica na linhagem A/J, comparada à Balb/cJ e C57BL/6J. Contudo, 3 semanas após a lesão a linhagem C57BL/6J apresentou menor cobertura sináptica, enquanto AIJ e Balb/cJ recuperam suas aferências. Concluímos que a expressão de MHC I influencia o processo de eliminação sináptica e, possivelmente contribui para o potencial regenerativo dos neurônios axotomizados / Abstract: The wiring of the Central Nervous System (CNS) is an immensely complex process, not only dependent on new communication points, the synapses, but also on the elimination of exuberant or inappropriate synapses during development. Earlier studies have shown that the abscence of class I major histocompatibility complex (class I MHC) in the CNS decreases synaptic elimination during CNS development and increases synaptic retraction in adult. Thus, an axon transection has been shown to induce an extensive detachment of presynaptic terminais from perikarya and dendrites ofaxotomized neurons. In the present work, we investigated synaptological changes in alpha motoneurons from lumbar intumescence in three mice isogenic strains (C57/BL6J, AIJ and Balb/cJ), 1 and 3 weeks after sciatic nerve transection. For this purpose we studied ultrastructurally the synaptic covering of the cell soma of sciatic motoneurons after the lesion. Therefore, spinal cords from adult male mice were processed for transmission electron microscopy (TEM) and imunohistochemistry (IH). For IH, anti-MHC I and anti-synaptofisin antibodies were used, conjugated with CY2 or CY3 secondary antibodies and analyzed with a confocal microscope. The results showed a significant increased expression of MHC I in AIJ strain in comparison to Balb/cJ and C57BL/6J, 1 week after axotomy. Nevertheless, the immunoreactivity levels of this molecule 3 weeks after axotomy did not differ among the studied mice strains. Additionally, a conspicuous decrease of synaptofisin expression in A/J mice was observed 1 week after sciatic transection. Similarly to the MHC I immunolabelirlg, 3 weeks after lesion, ali mice strains showed similar levels of synaptofisin expression. The results from TEM 1 week after lesion showed a lower synaptic covering in AIJ mice in comparison to Balb/cJ and C57BL/6J, although 3 weeks after axotomy C57BL/6J displayed a lower synaptic covering, while AIJ and Balb/cJ strains recovered their afferents, We conclude that the levei of MHC I expression influences the synaptic elimination process and possibly contributes to the regenerative potencial of the axotomized neurons / Doutorado / Anatomia / Doutor em Biologia Celular e Estrutural
40

Caractérisation de nouveaux modèles TDP-43/TDP-1 de Caenorhabditis elegans pour la maladie sclérose latérale amyotrophique

Duhaime, Sarah 12 1900 (has links)
La sclérose latérale amyotrophique (SLA) est une maladie neurodégénérative fatale caractérisée par une perte progressive et sélective des neurones moteurs. La SLA est incurable et il n’existe aucun traitement efficace pour les personnes atteintes de cette maladie. Environ 90% des cas sont sporadiques tandis que 10% sont familiaux, et les patients décèdent généralement deux à cinq ans après l'apparition des premiers symptômes. De nombreuses anomalies génétiques sont associées à la SLA, incluant des mutations dans les protéines FUS, C9orf72, SOD-1 et TDP-43. Le laboratoire a développé un modèle transgénique de Caenorhabditis elegans surexprimant la protéine humaine mutante TDP-43(Q331K) dans les neurones moteurs GABAergiques. Nous avons également obtenu par mutagénèse et CRISPR-Cas9 des modèles physiologiquement représentatifs du nématode basés sur des mutations dans tdp-1, l'orthologue de TARDBP chez le C. elegans. L'objectif est de caractériser ces modèles et de déterminer s'ils peuvent récapituler certains aspects phénotypiques clés de la SLA, tels que des déficits moteurs et une neurodégénérescence dépendante de l'âge générant une paralysie. L’hypothèse est que le modèle TDP-1 pourra refléter plus précisément l’expression physiologique du gène dans la maladie humaine grâce à la mutation dans un gène endogène, l’absence de surexpression et l’expression ubiquitaire de la protéine TDP-1. Les résultats montrent que les modèles TDP-43/TDP-1 ont des déficits moteurs, une transmission synaptique altérée et une neurodégénérescence liée à l’âge. Cependant, seule la mutation dans TDP-43 semble avoir un effet sur la durée de vie. Ces modèles procurent différentes expressions physiologiques des protéines mutantes et donc, des phénotypes de niveaux d'intensité variables. Ils constitueront des outils utiles pour élucider de nouveaux mécanismes pathogéniques de la SLA ainsi que de bons candidats pour le criblage de médicaments et le développement de stratégies thérapeutiques. / Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive and selective loss of motor neurons. ALS is incurable and there are no effective treatments available for people living with the disease. About 90% of the cases are sporadic whereas 10% are familial, and patients usually die two to five years after symptom onset. Many gene defects are associated with ALS, including mutations in genes encoding FUS, C9orf72, SOD-1 and TDP-43 proteins. We have developed a transgenic Caenorhabditis elegans model expressing human mutant TDP-43(Q331K) in GABAergic motor neurons. We have also obtained by mutagenesis and CRISPR-Cas9 physiologically accurate models based on mutations in tdp-1, the C. elegans ortholog of TARDBP. Our objective is to characterize these models and determine if they can recapitulate key aspects of the disease such as motor deficits and age-dependent neurodegeneration causing paralysis. We believe that the TDP-1 model will reflect more precisely the physiological expression of the gene in the human disease because of its mutation in an endogenous gene, the absence of overexpression and ubiquitous protein expression. Our results show that both TDP-43 and TDP-1 models have motor deficits, synaptic transmission impairments and age-dependent neurodegeneration. However, only the TDP-43 mutation seems to have an effect on lifespan. These models provide different physiological expression of mutant proteins and thus phenotypes of varying intensity levels. They will be useful tools to elucidate new pathogenic mechanisms of ALS as well as being good candidates for drug screening and developing therapeutic strategies.

Page generated in 0.0219 seconds