• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 30
  • 26
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 198
  • 198
  • 84
  • 69
  • 64
  • 45
  • 39
  • 30
  • 26
  • 25
  • 23
  • 23
  • 22
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The origins of individual differences in skilled reaching for food in rats

Gholamrezaei, Gita January 2011 (has links)
Rats display considerable individual differences in performance of skilled reaching for food. Such variability in the normal performance of the rats intrudes upon the interpretation of many different experimental investigations in behavioral neuroscience. Understanding the origins of individual differences in skilled reaching performance of the rat provides insights into brain function, the evolution of skilled reaching, and also it helps optimizing preventative and therapeutic care. Although variability in skilled reaching is manifested in many studies, their origins remain poorly understood. The objective of the present thesis was to document the individual differences in skilled reaching for food in rats and to examine potential sources of individual differences in brain function. The present studies revealed that the difference in reaching success displayed by rats was a robust and constant feature in different conditions, emerged with practice and the motor cortex plays an important role in such variability / x, 241 leaves : ill., ; 29 cm
42

Neurophysiological correlates of motor skill learning : reorganization of movement representations within motor cortex

Hogg, Theresa M., University of Lethbridge. Faculty of Arts and Science January 2002 (has links)
This thesis used a rodent model of skilled forelimb training and intracortical microstimulation to examine the relationship between learning and cortical reorganization. This thesis examines how reorganization is related to the specific changes in forelimb movements during learning. It also examines the role that task reptition plays in driving motor cortex reorganization and showed that once the skilled motor task had been acquired it was necessary to repeat the task sufficiently to produce motor cortex reorganiztion. This thesis also examines reorganization following skilled reach training was related to the consolidation of motor skill, finding that animals that learned the skilled reaching task after five days of training also showed cortical reorganization, which persisted for one month. These experiments show that the distribution and subsequent redistribution of movement representations within motor cortex is related to changes in motor performance that occur during motor training. / viii, 108 leaves : ill. ; 28 cm.
43

Somatomotor functioning in marmosets and the evolution of spinal cords in primates

Burish, Mark J. January 2008 (has links)
Thesis (Ph. D. in Neuroscience)--Vanderbilt University, Aug. 2008. / Title from title screen. Includes bibliographical references.
44

The anatomical and functional organization of sensorimotor cortex and thalamus in the Belanger's tree shrew

Remple, Michael S. January 2006 (has links)
Thesis (Ph. D. in Neuroscience)--Vanderbilt University, Aug. 2006. / Title from title screen. Includes bibliographical references.
45

Ultrasound Modulation of the Central and Peripheral Nervous System

January 2015 (has links)
abstract: Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb, for unknown reasons. Potentially, US could also stimulate peripheral or enteric neurons for control of blood glucose. To better understand the inconsistent effects across rat motor cortex, US modulation of electrically-evoked movements was tested. A stimulation array was implanted on the cortical surface and US (200 kHz, 30-60 W/cm2 peak) was applied while measuring changes in the evoked forelimb and hindlimb movements. Direct US stimulation of the hindlimb was also studied. To test peripheral effects, rat blood glucose levels were measured while applying US near the liver. No short-term motor modulation was visible (95% confidence interval: -3.5% to +5.1% forelimb, -3.8% to +5.5% hindlimb). There was significant long-term (minutes-order) suppression (95% confidence interval: -3.7% to -10.8% forelimb, -3.8% to -11.9% hindlimb). This suppression may be due to the considerable heating (+1.8°C between US/non-US conditions); effects of heat and US were not separable in this experiment. US directly evoked hindlimb and scrotum movements in some sessions. This required a long interval, at least 3 seconds between US bursts. Movement could be evoked with much shorter pulses than used in literature (3 ms). The EMG latency (10 ms) was compatible with activation of corticospinal neurons. The glucose modulation test showed a strong increase in a few trials, but across all trials found no significant effect. The single motor response and the long refractory period together suggest that only the beginning of the US burst had a stimulatory effect. This would explain the lack of short-term modulation, and suggests future work with shorter pulses could better explore the missing forelimb response. During the refractory period there was no change in the electrically-evoked response, which suggests the US stimulation mechanism is independent of normal brain activity. These results challenge the literature-standard protocols and provide new insights on the unknown mechanism. / Dissertation/Thesis / Doctoral Dissertation Bioengineering 2015
46

Effects of a Modified 30 Hz Intermittent Theta-Burst Stimulation (iTBS) Protocol on Corticospinal Excitability In Healthy Adults

Hosel, Katarina 16 September 2021 (has links)
Theta-burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (TMS) developed to induce neuroplasticity. TBS usually consists of 50 Hz bursts at 5 Hz intervals. When applied intermittently, it can lead to facilitation of motor evoked potentials (MEPs), although these effects can be variable between individuals. Here, we aimed to determine whether a version of intermittent TBS (iTBS) consisting of 30 Hz bursts at 6 Hz intervals would produce less variable modulation. Nineteen healthy adults underwent single-pulse TMS to assess corticomotor excitability at baseline as reflected in MEP amplitude. 30 Hz iTBS was then administered and MEP amplitude was reassessed at 5-, 20- and 45-mins after the iTBS protocol. Compared to baseline, MEPs were significantly facilitated up to 45-min post-iTBS and most participants exhibited the expected facilitation. These observations suggest that 30 Hz/6 Hz iTBS may provide a sound alternative to induce consistent neuromodulatory effects over the commonly used 50 Hz/5 Hz protocol.
47

Flexible Corticospinal Control of Muscles

Marshall, Najja January 2021 (has links)
The exceptional abilities of top-tier athletes – from Simone Biles’ dizzying gymnastics to LeBron James’ gravity-defying bounds – can easily lead one to forget to marvel at the exceptional breadth of everyday movements. Whether holding a cup of coffee, reaching out to grab a falling object, or cycling at a quick clip, every motor action requires activating multiple muscles with the appropriate intensity and timing to move each limb or counteract the weight of an object. These actions are planned and executed by the motor cortex, which transmits its intentions to motoneurons in the spinal cord, which ultimately drive muscle contractions. A central problem in neuroscience is precisely how neural activity in cortex and the spinal cord gives rise to this diverse range of behaviors. At the level of spinal cord, this problem is considered to be well understood. A foundational tenet in motor control asserts that motoneurons are controlled by a single input to which they respond in a reliable and predictable manner to drive muscle activity, akin to the way that depressing a gas pedal by the same degree accelerates a car to a predictable speed. Theories of how motor cortex flexibly generates different behaviors are less firmly developed, but the available evidence indicates that cortical neurons are coordinated in a similarly simplistic, well-preserved manner. Yet a potential complication for both these old and new theories are the relative paucity of diverse behaviors during which motor cortex and spinal motoneurons have been studied. In this dissertation, I present results from studying these two neuronal populations during a broader range of behaviors than previously considered. These results indicate, in essence, that diverse behaviors involve greater complexity and flexibility in cortical and spinal neural activity than indicated by current theories.
48

HUMAN MOTOR CORTEX ORGANIZATION: HOMUNCULAR PLASTICITY AND ITS MECHANISM

Fassett, Hunter January 2017 (has links)
The primary motor cortex (M1) contains a somatotopic progression with highly overlapping areas outputting to muscles of the upper limb. This organization is modified by muscle activity and neurological injury such as spinal cord injury (SCI). To date, bilateral M1 organization in controls and SCI has been minimally explored, and no study has examined the cortical territory that directs output to multiple muscles thought to be involved in movement synergies. An initial study was conducted to characterize the bilateral organization and representational overlap for muscles of the upper limb in incomplete spinal cord injury relative to uninjured individuals. Differences in symmetry and amount of overlapping territory were observed between groups, possibly reflecting differences in synergistic muscle use. The second study examined transcallosal communication between the two motor cortices and its role in dynamically modulating motor representations during unilateral contraction. The depth of interhemispheric inhibition (IHI) was examined in a muscle of the right hand by delivering a conditioning stimulus to ipsilateral M1 followed by a test stimulus to contralateral M1. Reduced IHI corresponded to larger cortical territory, a relationship that existed for both contralateral and ipsilateral contraction. These data demonstrate that the magnitude of IHI in a hand muscle predicts the size of the cortical territory occupied by that muscle. We present a mechanistic model to explain these findings that further elucidate the role of interhemispheric communication in shaping motor output. This interaction between transcallosal inhibition and motor output may act as a component to experience-dependent plasticity within M1. By targeting this interaction, it may be possible to facilitate motor learning and performance or promote recovery of function following neurological injury. Further study examining the role of various intracortical circuits on representational plasticity and modulation of these interactions may yield advances in both basic and clinical neuroscience. / Thesis / Master of Science (MSc)
49

Neural Mechanisms of Motor Cortical Representation Modulation

Savoie, Mitchell January 2018 (has links)
TMS can be used to generate representational maps by delivering pulses at throughout a grid, centered over the most sensitive spot to elicit a resulting MEP called the motor hotspot. The areas of these maps are modulated by muscle contraction and have been shown to increase in area with increasing contraction intensity. Both intracortical inhibition (SICI), and intracortical facilitation (ICF) are paired pulse paradigms in which contraction causes a reduction in magnitude. The present study aimed to categorize changes in the above circuits and representational maps as well as expose a possible relationship between both metrics in the context of graded contraction. To study these questions 15 healthy, right-handed volunteers participated in a study measuring SICI, ICF and cortical maps under conditions of REST, 10, 20 and 30% of MVC of the right FDI muscle. SICI and ICF showed significant reduction between REST and no differences amongst contraction levels. However, SICI displayed a graded reduction through contraction levels when analyzed on a trial-by-trial basis sorted by actual contraction level. Cortical representational area increased from REST to all contraction states and between 10 and 30% MVC confirming the graded growth observed in previous studies. Further, analysis shows that SICI, ICF and area all exhibited the majority of their modulation within the first 10% of contraction. Both SICI and ICF were not significantly correlated to the growth in representational area. This may be in part due to participants’ variability in the level of contraction sustained during measures, which also made it unfeasible to conduct a correlation of trial-by-trial data between map area and circuit magnitudes. We present evidence to corroborate previous findings for the effects of contraction on intracortical circuits and representational area during graded contraction as well as contribute to the methodology of such investigations concerning the control of varied contraction. / Thesis / Master of Science (MSc)
50

Motor cortex involvement in deep brain stimulation therapeutic action and motor learning impairment in Parkinsonism. / CUHK electronic theses & dissertations collection

January 2013 (has links)
初級運動皮質直接負責運動控制。大量關於帕金森式癥(PD)的有效治療手段的研究已經證明,初級運動皮質在病理情況下的功能改變,直接與患者運動障礙相關。本論文的研究重點在於探索初級運動皮質在深部腦刺激治療帕金森氏症的運動障礙的過程中發揮的作用及其與運動學習功能障礙的聯繫。 / 丘腦底核深部腦刺激(STN-DBS) 已被廣泛應用於治療帕金森式症。雖然該項治療手段能顯著地改善患者的運動功能障礙,但其確切的治療機制仍未明確。理論上來說,丘腦底核深部腦刺激能夠直接啟動丘腦底核內部和其周圍很大範圍的神經組織,包括丘腦底核內部本身的神經元胞體,以及與其相連接的輸入輸出核團的神經元軸突。在丘腦底核眾多輸入核團之中,一個重要的神經輸入來自於初級運動皮質(MI)第五層的離皮質神經元(CxFn),電刺激引起的逆行皮質啟動作用被提出,用於解釋丘腦底核深部腦刺激的治療機制。 / 為了研究逆行皮質啟動效應究竟如何在丘腦底核深部腦刺激的過程之中帶來治療效果,我們採用多通道神經電生理信號記錄系統在自由活動的單側帕金森大鼠的初級運動皮質進行鋒電位元和局部場電位元信號的記錄。實驗結果證明,當對丘腦底核進行高頻電刺激,在運動皮質第五層的離皮質神經元能成功記錄到保持固定延時的逆行鋒電位。由於增加刺激頻率會引起逆行鋒電位被成功記錄到的百分比下降,因此當深部腦刺激的頻率選擇在125Hz時,逆行鋒電位的放電頻率達到最高,而此刺激頻率正好與行為學實驗中帶來最佳治療效果的刺激頻率一致。於此同時,逆行皮質啟動作用還伴隨著初級運動皮質離皮質神經元的自發放電頻率增加、同步性爆發式放電減少等電生理信號特點。場電位分析的結果進一步表明,丘腦底核深部腦刺激減弱了病理情況下出現的beta波頻譜能量增高以及鋒電位-場電位相干性增強。更重要的是,我們發現只有逆行鋒電位被成功誘發,離皮質神經元的發放電機率才能被調節。這點有力地表明由電刺激隨機誘發的逆行鋒電位傳導至初級運動皮質,直接幹預並抑制了離皮質神經元在病理情況下的同步性爆發式放電活動,從而緩解了帕金森氏症的運動障礙。 / 另外,初級運動皮質並不僅僅是一個靜態的運動控制中樞,更為重要的功能在於它參與著與運動學習和運動記憶相關的動態資訊編碼。帕金森氏症患者普遍存在皮質可塑性減弱以及運動技能學習障礙。由於初級運動皮質分層結構的存在,層內神經元之間的突觸連接為神經可塑性提供了很好的結構基礎。因此,我們在初級運動皮質誘發在體長時程增強(LTP),旨在研究與運動技能學習相關的皮質神經可塑性的動態變化過程,以及探索中腦多巴胺能投射系統對皮質神經可塑性的影響。 / 一方面,我們採用間斷性高頻刺激誘發在體長時程增強,證實六羥多巴損毀後皮質的長時程增強水準顯著下降。另一方面,我們設計前肢抓食的行為學範式用來評價動物在運動技能學習的不同階段皮質可塑性發生的動態變化。實驗結果表明,直接損毀皮質的多巴胺能輸入,模型組大鼠與假實驗組大鼠的行為表現在初期的技能獲取階段並無明顯差異,而只在後期的技能鞏固階段模型組大鼠表現出技能鞏固障礙。更為有趣的是,兩組行為學變化趨勢與各自的在體長時程增強的變化趨勢有很高的一致性。本研究表明多巴胺對初級運動皮質的支配在運動記憶的鞏固過程中起著關鍵作用。在帕金森氏症的病理情況下,多巴胺耗竭將影響皮質的突觸可塑性,從而造成帕金森患者在運動技能的鞏固階段表現出障礙。 / The primary motor cortex (MI) controls movement directly, but is an under-investigated brain region in the pathogenesis and treatment of Parkinsonian motor disability, when compared with the basal ganglia circuitry. In this study, the roles of MI in underlying the therapeutic action of surgical deep brain stimulation and motor learning impairment were investigated. / Deep brain stimulation of the subthalamic nucleus (STN-DBS) is now a recognized therapeutic option for Parkinson’s disease (PD). Although this surgical strategy provides behavioral benefits remarkably, its exact mechanism is still a matter of controversy. In principle, STN-DBS can directly activate a wide range of neuronal elements within the STN and surrounding areas. As the corticofugal neurons (CxFn) in the layer V motor cortex provide a major input to the STN, we hypothesized that the stimulation evoked antidromic cortical activation is involved in the therapeutic mechanism of STN-DBS. In the first series of experiments, we performed simultaneous recordings of multi-unit neuronal activities and local field potentials (LFPs) in MI in freely moving hemi-parkinsonian rats. By identifying stimulation evoked antidromic spike, which occurred at a fixed, short latency, CxFn located in the layer V MI were identified. Increasing stimulation frequency also increased failure rate of activation, resulting in a peak frequency of stochastic antidromic spikes at 125Hz STN-DBS, which was correlated with the optimal therapeutic efficacy observed in behavioral tests. Meanwhile, this antidromic effect was accompanied by the rectification of pathological neuronal activities including increased spontaneous firing rate, reduced burst discharge and synchrony among the CxFn. Field potential analysis revealed that STN-DBS alleviated the dominance of pathological beta band oscillation and spike-field coherence in the MI. More importantly, it was found that the firing probability of CxFn could only be modified following the occurrence of antidromic spikes, suggesting that direct interference of stochastic antidromic spikes with pathological neuronal activities underlies the beneficial effect of STN-DBS. / The MI is not simply a static motor control structure. It also contains a dynamic substrate that participates in motor learning or stores motor memory. In PD patients, loss of cortical plasticity and impaired motor learning is a common feature. As the intrinsic horizontal neuronal connections in MI are a strong candidate of cellular correlate for activity-dependent plasticity, in the second series of experiments, we developed in vivo long-term potentiation (LTP) technique in the MI to investigate the dynamics of cortical plasticity during motor skill learning and the role of the innervation by mesocortical dopamine input. Local depletion of dopamine in the primary motor cortex resulted in reduced performance in the forelimb reaching for food learning task. Although the performance of the PD rats in the initial learning phase was comparable to that of the sham-operated group, as training continued, these animals exhibited deficit in consolidating the motor skill. These deficits closely paralleled the impairment in training-enhanced synaptic connections in layer V neurons, and the in vivo LTP of evoked field excitatory postsynaptic potentials induced by intermittent high frequency stimulation. In addition, progressive recruitment of task-specific neurons was suppressed. Our study therefore revealed that dopamine depletion confined to the MI could lead to impairment in cortical synaptic plasticity which may preferentially affect the consolidation, but not the acquisition, of motor skills. These findings shed light on the cellular mechanisms of motor skill learning and could explain the decreased ability of PD patients in learning new motor skills. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Li, Qian. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 168-190). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / CHAPTER 1 --- p.1 / General Introduction --- p.1 / Chapter 1.1 --- Anatomical organization of the basal ganglia --- p.1 / Chapter 1.1.1 --- Overview of the basal ganglia circuit --- p.1 / Chapter 1.1.2 --- Cortico-basal ganglia-cortical circuit --- p.1 / Chapter 1.1.2.1 --- Direct and indirect pathway --- p.2 / Chapter 1.1.2.2 --- Hyperdirect pathway --- p.2 / Chapter 1.1.2.3 --- The midbrain dopamine system --- p.2 / Chapter 1.2 --- Striatum --- p.3 / Chapter 1.2.1 --- Cell types in the striatum. --- p.3 / Chapter 1.2.2 --- The Cortico-striatal system --- p.4 / Chapter 1.3 --- Subthalamic Nucleus --- p.5 / Chapter 1.3.1 --- Neuronal property of the STN. --- p.5 / Chapter 1.3.2 --- Electrophysiological property of the STN --- p.6 / Chapter 1.3.3 --- Cortico-subthalamic system --- p.7 / Chapter 1.3.4 --- Functional significance of the cortico-subthalamic and corticostriatal system. --- p.8 / Chapter 1.4 --- Parkinson’s disease --- p.9 / Chapter 1.4.1 --- Pathogenesis of PD --- p.9 / Chapter 1.4.2 --- Genetic risk factors of PD --- p.10 / Chapter 1.4.3 --- Progressive motor symptoms of PD --- p.11 / Chapter 1.4.4 --- Non-motor symptoms of PD --- p.13 / Chapter 1.4.5 --- Pathological neuronal rhythms in the basal ganglia of PD. --- p.16 / Chapter 1.5 --- Experimental studies of PD. --- p.18 / Chapter 1.5.1 --- Animal modeling of PD. --- p.18 / Chapter 1.5.2 --- Motor deficits evaluation in rodent models of PD --- p.21 / Chapter 1.5.3 --- Non-motor symptoms evaluation in experimental models of PD --- p.24 / Chapter 1.6 --- Deep Brain Stimulation --- p.27 / Chapter 1.6.1 --- DBS in alleviating Parkinsonian motor symptoms --- p.28 / Chapter 1.6.2 --- DBS in alleviating Parkinsonian non-motor symptoms --- p.29 / Chapter 1.6.3 --- Investigation of the STN-DBS mechanism. --- p.31 / Chapter 1.6.3.1 --- Local inhibitory effect within the STN --- p.32 / Chapter 1.6.3.2 --- Excitatory effect at output nuclei --- p.33 / Chapter 1.6.3.3 --- The de-coupling of soma and axons at system level --- p.34 / Chapter 1.6.3.4 --- Effects of DBS on abnormal rate or pattern --- p.35 / Chapter 1.6.3.5 --- Antidromic propagation of DBS effect towards cortex --- p.37 / Chapter 1.7 --- Objective --- p.38 / Chapter 1.8 --- Figures --- p.41 / CHAPTER 2 --- p.47 / General Methods --- p.47 / Chapter 2.1 --- Animals --- p.47 / Chapter 2.2 --- Stereotaxic surgery --- p.47 / Chapter 2.2.1 --- Preoperative preparation --- p.47 / Chapter 2.2.2 --- Anesthesia and craniotomy --- p.48 / Chapter 2.2.3 --- Induction of hemi-Parkinsonian rat model --- p.48 / Chapter 2.2.4 --- Electrode implantation techniques. --- p.49 / Chapter 2.3 --- Behavioral assessment. --- p.50 / Chapter 2.3.1 --- Apomorphine-induced contralateral rotation. --- p.50 / Chapter 2.3.2 --- Open field test --- p.50 / Chapter 2.4 --- STN-DBS protocol --- p.50 / Chapter 2.5 --- Electrophysiological data acquisition --- p.51 / Chapter 2.6 --- Data analysis --- p.52 / Chapter 2.6.1 --- Statistical analysis of behavioral data --- p.52 / Chapter 2.6.2 --- Electrophysiological data --- p.52 / Chapter 2.6.2.1 --- Stimulation artifact removal --- p.52 / Chapter 2.6.2.2 --- Multi-unit spike sorting --- p.53 / Chapter 2.6.2.3 --- Electrophysiological identification of pyramidal neuron and interneuron. --- p.54 / Chapter 2.6.2.4 --- Identification of antidromic cortical activation --- p.54 / Chapter 2.6.2.5 --- Discharge pattern classification --- p.54 / Chapter 2.6.2.6 --- Synchrony level evaluation --- p.55 / Chapter 2.6.2.7 --- Oscillatory rhythm characterization --- p.55 / Chapter 2.6.2.8 --- Coherence Level Measurement --- p.56 / Chapter 2.7 --- Histological verification --- p.56 / Chapter 2.8 --- Figures --- p.58 / CHAPTER 3 --- p.60 / Alleviation of Parkinsonian Motor Symptoms during Deep Brain Stimulation in Hemi-Parkinsonian Rats --- p.60 / Chapter 3.1 --- Introduction --- p.60 / Chapter 3.2 --- Materials & Methods --- p.61 / Chapter 3.2.1 --- Animals --- p.61 / Chapter 3.2.2 --- Chemicals --- p.61 / Chapter 3.2.3 --- Equipment --- p.61 / Chapter 3.3 --- Results --- p.62 / Chapter 3.3.1 --- Time course of the Apomorphine induced rotation behavior --- p.62 / Chapter 3.3.2 --- Dose-dependence of the Apomorphine induced rotation --- p.62 / Chapter 3.3.3 --- Acute behavioral response to STN-DBS. --- p.63 / Chapter 3.3.4 --- The dependence of STN-DBS effect on stimulation paradigm. --- p.64 / Chapter 3.3.5 --- Acute effects of STN-DBS on APO induced rotation. --- p.64 / Chapter 3.3.6 --- Long-term effects of STN-DBS on APO induced rotation --- p.64 / Chapter 3.3.7 --- Histological confirmation of the stimulation electrodes localization --- p.65 / Chapter 3.3.8 --- Loss of DA neurons in the SNc --- p.65 / Chapter 3.3.9 --- Reductions of the DA axon terminals in the striatum --- p.65 / Chapter 3.3.10 --- Chronic STN-DBS failed to rescue nigrostsriatal and striatal DA --- p.66 / Chapter 3.4 --- Discussion --- p.66 / Chapter 3.4.1 --- Neurotoxic mechanism of 6-OHDA --- p.66 / Chapter 3.4.2 --- Time course of dopamine degeneration induced by 6-OHDA --- p.66 / Chapter 3.4.3 --- Failure in observing worsened motor symptoms during low frequency STN-DBS. --- p.67 / Chapter 3.4.4 --- Experimental DBS based on rat model: does it mimic human case? --- p.67 / Chapter 3.4.5 --- Technical issues about STN-DBS --- p.69 / Chapter 3.5 --- Figures --- p.72 / CHAPTER 4 --- p.82 / Direct involvement of the Corticofugal Neurons in Motor Cortex during Therapeutic Deep Brain Stimulation --- p.82 / Chapter 4.1 --- Introduction --- p.82 / Chapter 4.2 --- Materials --- p.83 / Chapter 4.2.1 --- Animals --- p.83 / Chapter 4.2.2 --- Chemicals --- p.83 / Chapter 4.2.3 --- Equipment --- p.83 / Chapter 4.3 --- Results --- p.84 / Chapter 4.3.1 --- Identification of CxFn based on antidromic effect --- p.84 / Chapter 4.3.2 --- Antidromic spikes frequency correlates with therapeutic effect of STN-DBS. --- p.84 / Chapter 4.3.3 --- Pathological changes of neuronal firing rate in MI --- p.85 / Chapter 4.3.4 --- Only high frequency STN-DBS normalizes neuronal firing rate in MI --- p.86 / Chapter 4.3.5 --- Pathological changes of neuronal discharge pattern in MI --- p.88 / Chapter 4.3.6 --- Pathological synchrony of MI neuronal population, especially during burst discharge --- p.89 / Chapter 4.3.7 --- High frequency STN-DBS successfully suppresses synchronized burst discharge in MI --- p.89 / Chapter 4.3.8 --- Pathological β-band oscillatory activity in MI-LFPs induced by 6-OHDA lesion --- p.90 / Chapter 4.3.9 --- High frequency STN-DBS alleviates the β-band oscillation in MI-LFPs --- p.90 / Chapter 4.3.10 --- Synchronized bursting discharge correlates with oscillatory activity --- p.91 / Chapter 4.3.11 --- Pathological increased spike-LFP coherence level induced by 6-OHDA lesion --- p.92 / Chapter 4.3.12 --- High frequency STN-DBS modulated the spike-LFP coherence properties --- p.92 / Chapter 4.3.13 --- Antidromic spikes directly modulate the firing probability of CxFn --- p.93 / Chapter 4.3.14 --- Antidromic spikes modulate the firing probability of INs and non-CxFn nearby. --- p.94 / Chapter 4.3.15 --- The efficiency of antidromic cortical modulation depends on DBS frequency --- p.94 / Chapter 4.3.16 --- Orthodromic vs. antidromic effect: which one is responsible for the beneficial effect of DBS? --- p.95 / Chapter 4.3.17 --- Histology --- p.96 / Chapter 4.4 --- Discussion --- p.96 / Chapter 4.4.1 --- Origin of pathogenic rhythm in basal ganglia circuit --- p.96 / Chapter 4.4.2 --- Suppression of oscillatory synchronization equals to therapeutic effects of DBS? --- p.97 / Chapter 4.4.3 --- Beneficial effect of DBS corresponds to the topographic distribution of cortico-subthalamic projection. --- p.98 / Chapter 4.4.4 --- What is the reason for a stochastic pattern of antidromic activation effect? --- p.99 / Chapter 4.4.5 --- Desynchronization of pathological oscillatory rhythm by antidromic activation --- p.100 / Chapter 4.4.6 --- Antidromic vs. orthodromic: which is the cause of the beneficial effects of DBS? --- p.101 / Chapter 4.4.7 --- Wide propagation of antidromic effect by cortical horizontal circuits --- p.102 / Chapter 4.4.8 --- Significance of antidromic cortical activation in during STN-DBS --- p.102 / Chapter 4.4.9 --- Implication of antidromic activation effect on pathogenesis and treatment of PD --- p.104 / Chapter 4.5 --- Figures --- p.105 / CHAPTER 5 --- p.132 / Impaired Synaptic Plasticity in the Primary Motor Cortex after Dopamine Depletion: Potential Role in Motor Memory Consolidation --- p.132 / Chapter 5.1 --- Introduction --- p.132 / Chapter 5.1.1 --- Characteristics of motor learning --- p.132 / Chapter 5.1.2 --- Motor learning related cortical plasticity. --- p.133 / Chapter 5.1.3 --- Dopaminergic signals in the primary motor cortex --- p.134 / Chapter 5.1.4 --- Impaired cortical plasticity in PD --- p.135 / Chapter 5.1.5 --- Objective --- p.136 / Chapter 5.2 --- Materials --- p.136 / Chapter 5.2.1 --- Animals --- p.136 / Chapter 5.2.2 --- Chemicals --- p.136 / Chapter 5.2.3 --- Equipment --- p.136 / Chapter 5.3 --- Methods --- p.136 / Chapter 5.3.1 --- Functional mapping of the forelimb territory in MI --- p.136 / Chapter 5.3.2 --- Stereotaxic surgery --- p.137 / Chapter 5.3.3 --- Forelimb-reaching Task. --- p.137 / Chapter 5.3.4 --- In-vivo LTP Induction. --- p.138 / Chapter 5.4 --- Results --- p.139 / Chapter 5.4.1 --- Functional mapping of rat forelimb territory. --- p.139 / Chapter 5.4.2 --- Morphologies of evoked field potential response --- p.139 / Chapter 5.4.3 --- LTP of the early, monosynaptic plasticity within horizontal layer V MI --- p.140 / Chapter 5.4.4 --- LTP of the late, polysynaptic plasticity within horizontal layer V MI --- p.140 / Chapter 5.4.5 --- Impaired synaptic plasticity in MI after dopamine depletion --- p.140 / Chapter 5.4.6 --- Learning curve of forelimb-reaching task --- p.140 / Chapter 5.4.7 --- Physiologically enhanced cortical plasticity during motor learning --- p.141 / Chapter 5.4.8 --- Dynamic modulation of cortical neuronal activities during motor skill learning. --- p.142 / Chapter 5.4.9 --- Statistical analysis of ‘task related’ neuron’s modulation pattern. --- p.143 / Chapter 5.4.10 --- Loss of dopamine modulation in the MI --- p.144 / Chapter 5.5 --- Discussion --- p.144 / Chapter 5.5.1 --- Distinguishing between monosynaptic and polysynaptic transmission --- p.144 / Chapter 5.5.2 --- Artificially vs physiologically induced cortical plasticity. --- p.145 / Chapter 5.5.3 --- Cortical synaptic plasticity interprets motor learning dynamics --- p.146 / Chapter 5.5.4 --- Balance between neuronal recruitment and withdrawal in the consolidation stage --- p.147 / Chapter 5.5.5 --- Dopamine’s involvement in mediating the cortical synaptic plasticity. --- p.148 / Chapter 5.6 --- Figures --- p.150 / Conclusion --- p.162 / Abbreviations --- p.165 / References --- p.168

Page generated in 0.2527 seconds