• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 2
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentation of the Brain from MR Images

Caesar, Jenny January 2005 (has links)
<p>KTH, Division of Neuronic Engineering, have a finite element model of the head. However, this model does not contain detailed modeling of the brain. This thesis project consists of finding a method to extract brain tissues from T1-weighted MR images of the head. The method should be automatic to be suitable for patient individual modeling.</p><p>A summary of the most common segmentation methods is presented and one of the methods is implemented. The implemented method is based on the assumption that the probability density function (pdf) of an MR image can be described by parametric models. The intensity distribution of each tissue class is modeled as a Gaussian distribution. Thus, the total pdf is a sum of Gaussians. However, the voxel values are also influenced by intensity inhomogeneities, which affect the pdf. The implemented method is based on the expectation-maximization algorithm and it corrects for intensity inhomogeneities. The result from the algorithm is a classification of the voxels. The brain is extracted from the classified voxels using morphological operations.</p>
2

Segmentation of the Brain from MR Images

Caesar, Jenny January 2005 (has links)
KTH, Division of Neuronic Engineering, have a finite element model of the head. However, this model does not contain detailed modeling of the brain. This thesis project consists of finding a method to extract brain tissues from T1-weighted MR images of the head. The method should be automatic to be suitable for patient individual modeling. A summary of the most common segmentation methods is presented and one of the methods is implemented. The implemented method is based on the assumption that the probability density function (pdf) of an MR image can be described by parametric models. The intensity distribution of each tissue class is modeled as a Gaussian distribution. Thus, the total pdf is a sum of Gaussians. However, the voxel values are also influenced by intensity inhomogeneities, which affect the pdf. The implemented method is based on the expectation-maximization algorithm and it corrects for intensity inhomogeneities. The result from the algorithm is a classification of the voxels. The brain is extracted from the classified voxels using morphological operations.
3

Classifying Liver Fibrosis Stage Using Gadoxetic Acid-Enhanced MR Images

Lu, Yi Cheng January 2019 (has links)
The purpose is trying to classify the Liver Fibrosis stage using Gadoxetic Acid-EnhancedMR Images.  In the very beginning, a method proposed by one Korean group is being examined and trying to reproduce their result. However, the performance is not as impressive as theirs. Then, some gray-scale image feature extraction methods are used. Last but not least, the hottest method in recent years - ConvolutionNeural Network(CNN) was utilized. Finally, the performance has been evaluated in both methods. The result shows that with manual feature extraction, the Adaboost model works pretty well that AUC achieves 0.9. Besides, the AUC of ResNet-18 network - a deep learning architecture, can reach 0.93. Also, all the hyperparameters and training settings used on ResNet-18 can be transferred to ResNet-50/ResNet-101/InceptionV3 very well. The best model that can be obtained is ResNet-101which has an AUC of 0.96 - higher than all current publications for machine learning methods for staging liver fibrosis.
4

An Automated Human Organ Segmentation Technique for Abdominal Magnetic Resonance Images

Wu, Jie 03 1900 (has links)
<p> A new parameter-free texture feature-based seeded region growing algorithm is proposed in this dissertation for automated segmentation of organs in abdominal MR images. This algorithm requires that a user only mouse clicks twice to identify the upper left and lower right corners of a rectangular region of interest (ROI). With this given ROI, a seed point is automatically selected based on homogeneity criteria. Intensity as well as four texture features: 20 cooccurrence texture features, Gabor texture feature, and both 20 and 3D semivariogram texture features are extracted from the image and a seeded region growing algorithm is performed on these feature spaces. A threshold is then obtained by taking a lower value just before the one which results in an ' explosion '. An optional Snake post-processing tool is also provided to obtain better organ delineation. The comparative results of the texture features and intensity are reported using both normal digital images and abdominal MR images acquired from ten patients. Comparisons of Before and After Snake are also presented. Generally, Gabor texture feature is found to perform the best among all features . The experimental results of the proposed approach show that it is fast and accurate when combined with Gabor texture feature or intensity feature and should prove a boon to production radiological batch processing. </p> / Thesis / Doctor of Philosophy (PhD)
5

Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo / Semiautomatic segmentation of left ventricle in full sets of cardiac images

Torres, Rafael Siqueira 05 April 2017 (has links)
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia / The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
6

Segmentação semiautomática de conjuntos completos de imagens do ventrículo esquerdo / Semiautomatic segmentation of left ventricle in full sets of cardiac images

Rafael Siqueira Torres 05 April 2017 (has links)
A área médica tem se beneficiado das ferramentas construídas pela Computação e, ao mesmo tempo, tem impulsionado o desenvolvimento de novas técnicas em diversas especialidades da Computação. Dentre estas técnicas a segmentação tem como objetivo separar em uma imagem objetos de interesse, podendo chamar a atenção do profissional de saúde para áreas de relevância ao diagnóstico. Além disso, os resultados da segmentação podem ser utilizados para a reconstrução de modelos tridimensionais, que podem ter características extraídas que auxiliem o médico em tomadas de decisão. No entanto, a segmentação de imagens médicas ainda é um desafio, por ser extremamente dependente da aplicação e das estruturas de interesse presentes na imagem. Esta dissertação apresenta uma técnica de segmentação semiautomática do endocárdio do ventrículo esquerdo em conjuntos de imagens cardíacas de Ressonância Magnética Nuclear. A principal contribuição é a segmentação considerando todas as imagens provenientes de um exame, por meio da propagação dos resultados obtidos em imagens anteriormente processadas. Os resultados da segmentação são avaliados usando-se métricas objetivas como overlap, entre outras, comparando com imagens fornecidas por especialistas na área de Cardiologia / The medical field has been benefited from the tools built by Computing and has promote the development of new techniques in diverse Computer specialties. Among these techniques, the segmentation aims to divide an image into interest objects, leading the attention of the specialist to areas that are relevant in diagnosys. In addition, segmentation results can be used for the reconstruction of three-dimensional models, which may have extracted features that assist the physician in decision making. However, the segmentation of medical images is still a challenge because it is extremely dependent on the application and structures of interest present in the image. This dissertation presents a semiautomatic segmentation technique of the left ventricular endocardium in sets of cardiac images of Nuclear Magnetic Resonance. The main contribution is the segmentation considering all the images coming from an examination, through the propagation of the results obtained in previously processed images. Segmentation results are evaluated using objective metrics such as overlap, among others, compared to images provided by specialists in the Cardiology field
7

Shape Adaptive Integer Wavelet Transform Based Coding Scheme For 2-D/3-D Brain MR Images

Mehrotra, Abhishek 06 1900 (has links) (PDF)
No description available.
8

3D Coding Of MR Images And Estimation Of Hemodynamic Response Function From fMRI Data

Srikanth, R 11 1900 (has links) (PDF)
No description available.
9

Automated Liver Segmentation from MR-Images Using Neural Networks / Automatiserad leversegmentering av MR-bilder med neurala nätverk

Zaman, Shaikh Faisal January 2019 (has links)
Liver segmentation is a cumbersome task when done manually, often consuming quality time of radiologists. Use of automation in such clinical task is fundamental and the subject of most modern research. Various computer aided methods have been incorporated for this task, but it has not given optimal results due to the various challenges faced as low-contrast in the images, abnormalities in the tissues, etc. As of present, there has been significant progress in machine learning and artificial intelligence (AI) in the field of medical image processing. Though challenges exist, like image sensitivity due to different scanners used to acquire images, difference in imaging methods used, just to name a few. The following research embodies a convolutional neural network (CNN) was incorporated for this process, specifically a U-net algorithm. Predicted masks are generated on the corresponding test data and the Dice similarity coefficient (DSC) is used as a statistical validation metric for performance evaluation. Three datasets, from different scanners (two1.5 T scanners and one 3.0 T scanner), have been evaluated. The U-net performs well on the given three different datasets, even though there was limited data for training, reaching upto DSC of 0.93 for one of the datasets.

Page generated in 0.0497 seconds