• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the preconditioning in the domain decomposition technique for the p-version finite element method. Part I

Ivanov, S. A., Korneev, V. G. 30 October 1998 (has links)
Abstract P-version finite element method for the second order elliptic equation in an arbitrary sufficiently smooth domain is studied in the frame of DD method. Two types square reference elements are used with the products of the integrated Legendre's polynomials for the coordinate functions. There are considered the estimates for the condition numbers, preconditioning of the problems arising on subdomains and the Schur complement, the derivation of the DD preconditioner. For the result we obtain the DD preconditioner to which corresponds the generalized condition number of order (logp )2 . The paper consists of two parts. In part I there are given some preliminary re- sults for 1D case, condition number estimates and some inequalities for 2D reference element.
2

On the preconditioning in the domain decomposition technique for the p-version finite element method. Part II

Ivanov, S. A., Korneev, V. G. 30 October 1998 (has links)
P-version finite element method for the second order elliptic equation in an arbitrary sufficiently smooth domain is studied in the frame of DD method. Two types square reference elements are used with the products of the integrated Legendre's polynomials for the coordinate functions. There are considered the estimates for the condition numbers, preconditioning of the problems arising on subdomains and the Schur complement, the derivation of the DD preconditioner. For the result we obtain the DD preconditioner to which corresponds the generalized condition number of order (logp )2 . The paper consists of two parts. In part I there are given some preliminary results for 1D case, condition number estimates and some inequalities for 2D reference element. Part II is devoted to the derivation of the Schur complement preconditioner and conditionality number estimates for the p-version finite element matrixes. Also DD preconditioning is considered.

Page generated in 0.0434 seconds