• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the Autoconvolution Equation and Total Variation Constraints

Fleischer, G., Gorenflo, R., Hofmann, B. 30 October 1998 (has links) (PDF)
This paper is concerned with the numerical analysis of the autoconvolution equation $x*x=y$ restricted to the interval [0,1]. We present a discrete constrained least squares approach and prove its convergence in $L^p(0,1),1<p<\infinite$ , where the regularization is based on a prescribed bound for the total variation of admissible solutions. This approach includes the case of non-smooth solutions possessing jumps. Moreover, an adaption to the Sobolev space $H^1(0,1)$ and some remarks on monotone functions are added. The paper is completed by a numerical case study concerning the determination of non-monotone smooth and non-smooth functions x from the autoconvolution equation with noisy data y.
2

On the Autoconvolution Equation and Total Variation Constraints

Fleischer, G., Gorenflo, R., Hofmann, B. 30 October 1998 (has links)
This paper is concerned with the numerical analysis of the autoconvolution equation $x*x=y$ restricted to the interval [0,1]. We present a discrete constrained least squares approach and prove its convergence in $L^p(0,1),1<p<\infinite$ , where the regularization is based on a prescribed bound for the total variation of admissible solutions. This approach includes the case of non-smooth solutions possessing jumps. Moreover, an adaption to the Sobolev space $H^1(0,1)$ and some remarks on monotone functions are added. The paper is completed by a numerical case study concerning the determination of non-monotone smooth and non-smooth functions x from the autoconvolution equation with noisy data y.
3

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links) (PDF)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
4

On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces

Hofmann, B. 30 October 1998 (has links) (PDF)
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We define local ill-posedness of a nonlinear operator equation $F(x) = y_0$ in a solution point $x_0$ and the interplay between the nonlinear problem and its linearization using the Frechet derivative $F\acent(x_0)$ . To find an appropriate ill-posedness concept for the linarized equation we define intrinsic ill-posedness for linear operator equations $Ax = y$ and compare this approach with the ill-posedness definitions due to Hadamard and Nashed.
5

Stability Rates for Linear Ill-Posed Problems with Convolution and Multiplication Operators

Hofmann, B., Fleischer, G. 30 October 1998 (has links)
In this paper we deal with the `strength' of ill-posedness for ill-posed linear operator equations Ax = y in Hilbert spaces, where we distinguish according_to_M. Z. Nashed [15] the ill-posedness of type I if A is not compact, but we have R(A) 6= R(A) for the range R(A) of A; and the ill-posedness of type II for compact operators A: From our considerations it seems to follow that the problems with noncompact operators A are not in general `less' ill-posed than the problems with compact operators. We motivate this statement by comparing the approximation and stability behaviour of discrete least-squares solutions and the growth rate of Galerkin matrices in both cases. Ill-posedness measures for compact operators A as discussed in [10] are derived from the decay rate of the nonincreasing sequence of singular values of A. Since singular values do not exist for noncompact operators A; we introduce stability rates in order to have a common measure for the compact and noncompact cases. Properties of these rates are illustrated by means of convolution equations in the compact case and by means of equations with multiplication operators in the noncompact case. Moreover using increasing rearrangements of the multiplier functions specific measures of ill-posedness called ill-posedness rates are considered for the multiplication operators. In this context, the character of sufficient conditions providing convergence rates of Tikhonov regularization are compared for compact operators and multiplication operators.
6

On Ill-Posedness and Local Ill-Posedness of Operator Equations in Hilbert Spaces: On Ill-Posedness and Local Ill-Posedness of OperatorEquations in Hilbert Spaces

Hofmann, B. 30 October 1998 (has links)
In this paper, we study ill-posedness concepts of nonlinear and linear inverse problems in a Hilbert space setting. We define local ill-posedness of a nonlinear operator equation $F(x) = y_0$ in a solution point $x_0$ and the interplay between the nonlinear problem and its linearization using the Frechet derivative $F\acent(x_0)$ . To find an appropriate ill-posedness concept for the linarized equation we define intrinsic ill-posedness for linear operator equations $Ax = y$ and compare this approach with the ill-posedness definitions due to Hadamard and Nashed.

Page generated in 0.0298 seconds