• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 14
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 33
  • 32
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Design of YBCO-Based Machines Using 2D Method of Moments

Kyle T Waggoner (10686675) 07 May 2021 (has links)
<div>In this research, the use of a Type-2 superconducting material (i.e. Yttrium Barium Copper Oxide) as a magnetic flux source within synchronous machines is considered. To do so, an analytical model is applied to predict the magnetic field and the currents that are induced within the material when it is magnetized to a mixed-state. These induced currents are then used to model the synchronous machine performance within a 2-dimensional Method of Moments (MoM) formulation. The MoM-based model is used in tandem with a thermal equivalent circuit to calculate the cooling required to keep the YBCO below its critical temperature. These are utilized within a genetic algorithm (GA) to evaluate the tradeoffs between mass and loss for several example electric drives ranging from 10 kW-20 MW. The expected mass and loss of the YBCO machines are compared to those of a standard permanent magnet synchronous machine (PMSM). Specifically, Pareto-optimal fronts are used to assess power levels where cryo-cooled YBCO materials may be warranted.<br></div>
82

Use of Halbach Arrays in Axial and Radial Flux Permanent Magnet Machines for Aerospace Applications / Halbach Arrays in Aerospace Axial and Radial Flux Machines

Forsyth, Alexander January 2023 (has links)
In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of McMaster University's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink. / The need for reductions in global greenhouse gas emissions, coupled with rising fuel prices, has motivated intense research in the area of hybrid and fully electric crafts for commercial applications in the aviation sector. This thesis explores implementation of Halbach arrays in high-speed radial flux machines (RFMs) and low-speed axial flux machines (AFMs) for aerospace applications. Highly accurate analytical equations are developed for quickly predicting the magnetic field in the latter (both for coreless and steel core stators) due to the complex three dimensional axial flux paths which make traditional finite element analysis time-consuming. Electromagnetic design and optimization of two aerospace machines that use Halbachs are detailed. The first is a ~14 kW AFM intended to replace an existing high lift motor RFM concept in NASA’s Maxwell X57 all-electric plane. Two design variants are selected which achieve a 10 % increase in torque/power and a 10 % decrease in mass/volume, respectively. The second machine is a 20,000 RPM surface permanent magnet RFM capable of 150 kW peak power output that is intended as a proof-of-concept for the later development of a megawatt machine for a hybrid and/or all-electric aircraft. / Thesis / Master of Applied Science (MASc)
83

6/14 Switched Reluctance Machine Design for Household HVAC System Applications

Kasprzak, Michael January 2017 (has links)
With the unstable cost and supply of rare earth materials used in permanent magnet electric machines, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential HVAC systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full CAD assembly of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application. / Thesis / Master of Applied Science (MASc) / With the unstable cost and supply of rare earth materials used in permanent magnet electric motors, many alternative machine types are being studied which are suitable for different applications. The focus of this thesis is the design of a novel 6/14 switched reluctance machine which can be fitted in a residential heating, ventilation, and air-conditioning (HVAC) application based on measured performance characteristics of an existing surface mount permanent-magnet synchronous (SMPS) machine. Switched reluctance machines have a number of benefits over permanent magnet machines including that they do not have permanent magnets, are less sensitive to high heat scenarios, have lower manufacturing costs, are more robust, and are generally capable of higher operating speeds. Residential electric motor applications are reviewed and in particular - furnace blower motor appliances. The fundamentals of switched reluctance machines are discussed, including the mechanism, operation, and control strategy. A SMPS motor which is commercially available for retrofitting into residential furnace systems is analyzed to find its performance characteristics through disassembly, inspection, and dynamometer bench testing. The design of a novel 6/14 SRM optimization process is outlined to investigate the effect of changing the geometry values within the motor on the performance characteristics, while keeping within the size constraints of the original motor. A novel 6/14 SRM design is presented which is capable of achieving the target goals in the desired operating conditions. Further suitability testing is performed in terms of thermal analysis of the motor in the peak and continuous operating condition and mechanical stress analysis of the rotor under various rotational speeds. The full 3D CAD assembly model of the motor is designed including components from the original SMPS motor to allow for fitting in the same HVAC application.
84

DESIGN OF V-SHAPED INTERIOR PERMANENT MAGNETMACHINES FOR HVAC APPLICATIONS

Carlos Andres Castillo Ruiz (17593320) 10 December 2023 (has links)
<p dir="ltr">Recent regulatory changes have been proposed to phase down the use of hydrofluorocarbon</p><p dir="ltr">(HFC)-based refrigerants in air conditioning and refrigeration systems. The proposed</p><p dir="ltr">low global warming potential alternatives (low-GWP) are characterized by lower volumetric</p><p dir="ltr">capacities, which require either higher displacements or higher speeds to meet compressor</p><p dir="ltr">loads. In order to address this, the coupled optimization of a compressor system and its electric</p><p dir="ltr">drive has been proposed. The primary goal of this thesis is to establish tools that can be</p><p dir="ltr">used to assess the impact that alternative low-GWP refrigerants have on the sizing and performance</p><p dir="ltr">of electrically driven compressors. Toward this goal, a method-of-moments-based</p><p dir="ltr">model has been established and structured to enable rapid evaluation of the electromagnetic</p><p dir="ltr">performance of V-shaped interior magnet machines. Contributions to the model formulation</p><p dir="ltr">include the use of a judicious combination of point and pulse basis functions to evaluate</p><p dir="ltr">machine behavior under saturation of stator and rotor steels. Also included is a straightforward</p><p dir="ltr">means to include multiple operating points with minimal additional computational</p><p dir="ltr">expense. Coupled to the electromagnetic model is a thermal equivalent circuit model that</p><p dir="ltr">includes conductive heat transfer between slot winding bundles and stator steel. It also includes</p><p dir="ltr">convective heat transfer from the stator to the rotor through the airgap. The proposed</p><p dir="ltr">models have been validated using commercial finite-element based software. Subsequently,</p><p dir="ltr">they have been applied in design optimization studies used to compare the efficiency and size</p><p dir="ltr">(mass) between machines designed for a common HFC refrigerant (R410A) and a proposed</p><p dir="ltr">alternative (R454B).</p>
85

Modeling and Analysis of High Torque Density Transverse Flux Machines for Direct-Drive Applications

Hasan, Iftekhar, Hasan January 2017 (has links)
No description available.
86

A comparative analysis of a conventional versus a computer-assisted technique for identification of mechanical power press hazards

Wallace, Darrell Richard 15 March 2006 (has links)
No description available.
87

Design of apparatus for threaded part mating experiments

Ranyak, Paul Stephen. January 1981 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1981 / Vita. / Includes bibliographical references. / by Paul Stephen Ranyak. / B.S. / B.S. Massachusetts Institute of Technology, Department of Mechanical Engineering
88

MODELLING AND DESIGN OF ELECTRIC MACHINES AND ASSOCIATED COMPONENTS FOR MORE ELECTRIC VEHICLES

Zhao, Nan January 2017 (has links)
Concerns with emissions, CO2 in particular, and energy resource associated with conventional internal combustion engine (ICE) vehicles is motivating a shift towards more electrified power-trains for road transportation, as well as other transportation applications. The modelling, characterization and design of electrified power-trains, including energy storage technologies, traction machine technologies and their associated power electronics, are discussed in this thesis. Port cranes are a special case of land transportation encompassing many of the power-train objectives found common with road based hybrid electric vehicles; here a port crane system is studied. The power flow for a typical crane loading cycle is analyzed and the value of the energy consumption and saving potential is calculated. Then alternative energy storage applications are considered for hybrid power-train configurations employing diesel engine generators, battery packs, supercapacitors (SCs), and flywheels. A hybrid rubber tyred gantry crane (RTGC) power-train model with power management is developed and the battery-SC hybrid energy storage systems are designed for both short- and long-period operation. The Induction machine (IM) is a popular technology for traction applications. Although many publications discuss IM design to realize a traction torque-speed characteristic, the IM model is studied to determine the main parameters impacting on the machine performance capability at constant torque and extended speed. Based on the model analysis, an IM design procedure for traction applications is proposed which improves machine performance capability. The machine design parameters are normalized in per unit form and hence the proposed design procedure is applicable across different ratings. In the specification and definition of vehicle power-trains, it is common (in industry) to quote data at specific operating conditions, for example, full or fixed battery terminal voltage and system temperature. The interactive influence between energy storage devices and the vehicle system is investigated. Using the all-electric Nissan Leaf power-train as a reference example, the Nissan Leaf traction system is evaluated and performance assessed by considering DC-link voltage variation from battery full state of charge (SoC) to zero SoC and temperature variations typical of an automotive application, showing that the system stated performance is reduced as battery SoC decreases. An alternative traction machine design is proposed to satisfy the vehicle target performance requirements over the complete variation of SoC. The vehicle power-train is then modified with the inclusion of a DC/DC converter between the vehicle battery and DC-link to maintain the traction system DC-link voltage near constant. A supercapacitor system is also considered for improved system voltage management. The trade-offs between the actual Nissan Leaf power-train and the redesigned systems are discussed in terms of electronic and machine packaging, and mitigation of faulted operation at high speeds. Using the Nissan Leaf interior permanent magnet (IPM) machine as the benchmark machine, an example surface permanent magnet (SPM) machine, with same design constraints, is designed and compared with the benchmark IPM machine. The phase voltage distortion of IPM and SPM machines are compared and the mechanisms are revealed. An alternative machine topology with pole shoe rotor is proposed for reduction of machine peak current rating and voltage distortion. The pole shoe topology is common in industrial variable speed drives employing constant torque regimes, but not for traction. Here, the machine with pole shoe rotor is designed to achieve traction performance. The pole shoe concept for vehicle traction is significantly different from existing practice in the electric and hybrid electric automotive industry and thus departure in standard design is a contribution of this thesis. / Thesis / Doctor of Philosophy (PhD)
89

Computer-aided design of high speed synchronous machines.

Pérez Arriaga, José Ignacio January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / M.S.
90

Thermo-mechanical Finite Element Analysis And Design Of Tail Section For A Ballistic Missle

Guler, Togan Kemal 01 October 2012 (has links) (PDF)
During the flight of missiles, depending on the flight conditions, rotation of missiles around its centerline can cause instabilities. To override this issue, missile generally is designed in 2 sections. In the missile, the rear tail section and the front section are to rotate freely by means of bearings. Tail section on which bearings are mounted is designed according to thermal loads due to flow of hot gasses through the nozzle and mechanical loads due to inertial load, interference fit and thread preload which appear during flight of missile. The purpose of this thesis is to determine the most suitable structural parameters according to the flight conditions of missile. The geometrical and load parameters which have effect on the results were determined. Finite element model is formed by using FEA software. After that, transient nonlinear thermo-mechanical analyses are performed and the most effective parameter on VM (Von-Mises) stress and force is determined. DOE (Design of Experiments) method was used to determine the most suitable values for the structural parameters. Totally 27 different configurations are studied to achieve to the most suitable values for variable set. It is observed that VM stress and force results for all configurations are within the &plusmn / %5 ranges. So this means parameters don&rsquo / t affect the systems response very much. By taking manufacturing processes into consideration, configuration with the highest bearing inner/outer ring interference is taken. From the comparison of the results, the most suitable configuration is obtained after checking forces and VM stress on the bearings.

Page generated in 0.058 seconds