1 |
Grundlagen von Support Vector Machines (SVM)Pönisch, Jens 27 March 2019 (has links)
Support Vector Machines (SVM) sind eine Technik des überwachten Lernens für mittlere Datenmengen für die Klassifikation bzw. Regression. Grundidee bei der Klassifikation ist die Konstruktion einer optimalen Trennebene zwischen den Punkten verschiedener Datenklassen. Zur Behandlung von Ausreißern werden Schlupfvariablen eingeführt, der Kerneltrick erlaubt eine einfache Behandlung nichtlinearer Trennungen. Das Training besteht hier im Erlernen der optimalen Parameter des zu lösenden konvexen Optimierungsproblems.
|
2 |
Cutting force component-based rock differentiation utilising machine learningGrafe, Bruno 02 August 2023 (has links)
This dissertation evaluates the possibilities and limitations of rock type identification in rock cutting with conical picks. For this, machine learning in conjunction with features derived from high frequency cutting force measurements is used. On the basis of linear cutting experiments, it is shown that boundary layers can be identified with a precision of less than 3.7 cm when using the developed programme routine. It is further shown that rocks weakened by cracks can be well identified and that anisotropic rock behaviour may be problematic to the classification success. In a case study, it is shown that the supervised algorithms artificial neural network and distributed random forest perform relatively well while unsupervised k-means clustering provides limited accuracies for complex situations. The 3d-results are visualised in a web app. The results suggest that a possible rock classification system can achieve good results—that are robust to changes in the cutting parameters when using the proposed evaluation methods.:1 Introduction...1
2 Cutting Excavation with Conical Picks...5
2.1 Cutting Process...8
2.1.2 Cutting Parameters...11
2.1.3 Influences of Rock Mechanical Properties...17
2.1.4 Influences of the Rock Mass...23
2.2 Ratios of Cutting Force Components...24
3 State of the Art...29
3.1 Data Analysis in Rock Cutting Research...29
3.2 Rock Classification Systems...32
3.2.1 MWC – Measure-While-Cutting...32
3.2.2 MWD – Measuring-While-Drilling...34
3.2.3 Automated Profiling During Cutting...35
3.2.4 Wear Monitoring...36
3.3 Machine learning for Rock Classification...36
4 Problem Statement and Justification of Topic...38
5 Material and Methods...40
5.1 Rock Cutting Equipment...40
5.2 Software & PC...42
5.3 Samples and Rock Cutting Parameters...43
5.3.1 Sample Sites...43
5.3.2 Experiment CO – Zoned Concrete...45
5.3.3 Experiment GN – Anisotropic Rock Gneiss...47
5.3.4 Experiment GR – Uncracked and Cracked Granite...49
5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50
5.4 Data Processing...53
5.5 Force Component Ratio Calculation...54
5.6 Procedural Selection of Features...57
5.7 Image-Based Referencing and Rock Boundary Modelling...60
5.8 Block Modelling and Gridding...61
5.9 Correlation Analysis...63
5.10 Regression Analysis of Effect...64
5.11 Machine Learning...65
5.11.2 K-Means Algorithm...66
5.11.3 Artificial Neural Networks...67
5.11.4 Distributed Random Forest...70
5.11.5 Classification Success...72
5.11.6 Boundary Layer Recognition Precision...73
5.12 Machine Learning Case Study...74
6 Results...75
6.1 CO – Zoned Concrete...75
6.1.1 Descriptive Statistics...75
6.1.2 Procedural Evaluation...76
6.1.3 Correlation of the Covariates...78
6.1.4 K-Means Cluster Analysis...79
6.2 GN – Foliated Gneiss...85
6.2.1 Cutting Forces...86
6.2.2 Regression Analysis of Effect...88
6.2.3 Details Irregular Behaviour...90
6.2.4 Interpretation of Anisotropic Behaviour...92
6.2.5 Force Component Ratios...92
6.2.6 Summary and Interpretations of Results...93
6.3 CR – Cracked Granite...94
6.3.1 Force Component Results...94
6.3.2 Spatial Analysis...97
6.3.3 Error Analysis...99
6.3.4 Summary...100
6.4 Case Study...100
6.4.1 Feature Distribution in Block Models...101
6.4.2 Distributed Random Forest...105
6.4.3 Artificial Neural Network...107
6.4.4 K-Means...110
6.4.5 Training Data Required...112
7 Discussion...114
7.1 Critical Discussion of Experimental Results...114
7.1.1 Experiment CO...114
7.1.2 Experiment GN...115
7.1.3 Experiment GR...116
7.1.4 Case Study...116
7.1.5 Additional Outcomes...117
7.2 Comparison of Machine Learning Algorithms...118
7.2.1 K-Means...118
7.2.2 Artificial Neural Networks and Distributed Random Forest...119
7.2.3 Summary...120
7.3 Considerations Towards Sensor System...121
7.3.1 Force Vectors and Data Acquisition Rate...121
7.3.2 Sensor Types...122
7.3.3 Computation Speed...123
8 Summary and Outlook...125
References...128
Annex A Fields of Application of Conical Tools...145
Annex B Supplements Cutting and Rock Parameters...149
Annex C Details Topic-Analysis Rock Cutting Publications...155
Annex D Details Patent Analysis...157
Annex E Details Rock Cutting Unit HSX-1000-50...161
Annex F Details Used Pick...162
Annex G Error Analysis Cutting Experiments...163
Annex H Details Photographic Modelling...166
Annex I Laser Offset...168
Annex J Supplements Experiment CO...169
Annex K Supplements Experiment GN...187
Annex L Supplements Experiment GR...191
Annex M Preliminary Artificial Neural Network Training...195
Annex N Supplements Case Study (CD)...201
Annex O R-Codes (CD)...203
Annex P Supplements Rock Mechanical Tests (CD)...204 / Die Dissertation evaluiert Möglichkeiten und Grenzen der Gebirgserkennung bei der schneidenden Gewinnung von Festgesteinen mit Rundschaftmeißeln unter Nutzung maschinellen Lernens – in Verbindung mit aus hochaufgelösten Schnittkraftmessungen abgeleiteten Kennwerten. Es wird auf linearen Schneidversuchen aufbauend gezeigt, dass Schichtgrenzen mit Genauigkeiten unter 3,7 cm identifiziert werden können. Ferner wird gezeigt, dass durch Risse geschwächte Gesteine gut identifiziert werden können und dass anisotropes Gesteinsverhalten möglicherweise problematisch auf den Klassifizierungserfolg wirkt. In einer Fallstudie wird gezeigt, dass die überwachten Algorithmen Künstliches Neurales Netz und Distributed Random Forest teils sehr gute Ergebnisse erzielen und unüberwachtes k-means-Clustering begrenzte Genauigkeiten für komplexe Situationen liefert. Die Ergebnisse werden in einer Web-App visualisiert. Aus den Ergebnissen wird abgeleitet, dass ein mögliches Sensorsystem mit den vorgeschlagenen Auswerteroutinen gute Ergebnisse erzielen kann, die gleichzeitig robust gegen Änderungen der Schneidparameter sind.:1 Introduction...1
2 Cutting Excavation with Conical Picks...5
2.1 Cutting Process...8
2.1.2 Cutting Parameters...11
2.1.3 Influences of Rock Mechanical Properties...17
2.1.4 Influences of the Rock Mass...23
2.2 Ratios of Cutting Force Components...24
3 State of the Art...29
3.1 Data Analysis in Rock Cutting Research...29
3.2 Rock Classification Systems...32
3.2.1 MWC – Measure-While-Cutting...32
3.2.2 MWD – Measuring-While-Drilling...34
3.2.3 Automated Profiling During Cutting...35
3.2.4 Wear Monitoring...36
3.3 Machine learning for Rock Classification...36
4 Problem Statement and Justification of Topic...38
5 Material and Methods...40
5.1 Rock Cutting Equipment...40
5.2 Software & PC...42
5.3 Samples and Rock Cutting Parameters...43
5.3.1 Sample Sites...43
5.3.2 Experiment CO – Zoned Concrete...45
5.3.3 Experiment GN – Anisotropic Rock Gneiss...47
5.3.4 Experiment GR – Uncracked and Cracked Granite...49
5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores...50
5.4 Data Processing...53
5.5 Force Component Ratio Calculation...54
5.6 Procedural Selection of Features...57
5.7 Image-Based Referencing and Rock Boundary Modelling...60
5.8 Block Modelling and Gridding...61
5.9 Correlation Analysis...63
5.10 Regression Analysis of Effect...64
5.11 Machine Learning...65
5.11.2 K-Means Algorithm...66
5.11.3 Artificial Neural Networks...67
5.11.4 Distributed Random Forest...70
5.11.5 Classification Success...72
5.11.6 Boundary Layer Recognition Precision...73
5.12 Machine Learning Case Study...74
6 Results...75
6.1 CO – Zoned Concrete...75
6.1.1 Descriptive Statistics...75
6.1.2 Procedural Evaluation...76
6.1.3 Correlation of the Covariates...78
6.1.4 K-Means Cluster Analysis...79
6.2 GN – Foliated Gneiss...85
6.2.1 Cutting Forces...86
6.2.2 Regression Analysis of Effect...88
6.2.3 Details Irregular Behaviour...90
6.2.4 Interpretation of Anisotropic Behaviour...92
6.2.5 Force Component Ratios...92
6.2.6 Summary and Interpretations of Results...93
6.3 CR – Cracked Granite...94
6.3.1 Force Component Results...94
6.3.2 Spatial Analysis...97
6.3.3 Error Analysis...99
6.3.4 Summary...100
6.4 Case Study...100
6.4.1 Feature Distribution in Block Models...101
6.4.2 Distributed Random Forest...105
6.4.3 Artificial Neural Network...107
6.4.4 K-Means...110
6.4.5 Training Data Required...112
7 Discussion...114
7.1 Critical Discussion of Experimental Results...114
7.1.1 Experiment CO...114
7.1.2 Experiment GN...115
7.1.3 Experiment GR...116
7.1.4 Case Study...116
7.1.5 Additional Outcomes...117
7.2 Comparison of Machine Learning Algorithms...118
7.2.1 K-Means...118
7.2.2 Artificial Neural Networks and Distributed Random Forest...119
7.2.3 Summary...120
7.3 Considerations Towards Sensor System...121
7.3.1 Force Vectors and Data Acquisition Rate...121
7.3.2 Sensor Types...122
7.3.3 Computation Speed...123
8 Summary and Outlook...125
References...128
Annex A Fields of Application of Conical Tools...145
Annex B Supplements Cutting and Rock Parameters...149
Annex C Details Topic-Analysis Rock Cutting Publications...155
Annex D Details Patent Analysis...157
Annex E Details Rock Cutting Unit HSX-1000-50...161
Annex F Details Used Pick...162
Annex G Error Analysis Cutting Experiments...163
Annex H Details Photographic Modelling...166
Annex I Laser Offset...168
Annex J Supplements Experiment CO...169
Annex K Supplements Experiment GN...187
Annex L Supplements Experiment GR...191
Annex M Preliminary Artificial Neural Network Training...195
Annex N Supplements Case Study (CD)...201
Annex O R-Codes (CD)...203
Annex P Supplements Rock Mechanical Tests (CD)...204
|
Page generated in 0.0342 seconds