• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing vision data using prior knowledge for assembly applications

Khalili, K. January 1997 (has links)
No description available.
2

The development of optical techniques for component inspection in the aerospace industry

Irving, Paul Anthony January 1991 (has links)
No description available.
3

Towards the Utilization of Machine Vision Systems as an Integral Component of Industrial Quality Monitoring Systems

Megahed, Fadel Mounir 05 January 2010 (has links)
Recent research discussed the development of image processing tools as a part of the quality control framework in manufacturing environments. This research could be divided into two image-based fault detection approaches: 1) MVS; and 2) MVS and control charts. Despite the intensive research in both groups, there is a disconnect between research and the actual needs on the shop-floor. This disconnect is mainly attributed to the following: • The literature for the first category has mainly focused on improving fault detection accuracy through the use of special setups without considering its impact on the manufacturing process. Therefore, many of these methods have not been utilized by industry, and these tools lack the capability of using images already present on the shop floor. • The studies presented on the second category have been mainly developed in isolation. In addition, most of these studies have focused more on introducing the concept of utilizing control charts on image data rather than tackling specific industry problems. • In this thesis, these limitations are investigated and are disseminated to the research community through two different journal papers. In the first paper, it was shown that a face-recognition tool could be successfully used to detect faults in real-time in stamped processes, where the changes in image lighting conditions and part location were allowed to emulate actual manufacturing environments. On the other hand, the second paper reviewed the literature on image-based control charts and suggested recommendations for future research. / Master of Science
4

The Use of Image and Point Cloud Data in Statistical Process Control

Megahed, Fadel M. 18 April 2012 (has links)
The volume of data acquired in production systems continues to expand. Emerging imaging technologies, such as machine vision systems (MVSs) and 3D surface scanners, diversify the types of data being collected, further pushing data collection beyond discrete dimensional data. These large and diverse datasets increase the challenge of extracting useful information. Unfortunately, industry still relies heavily on traditional quality methods that are limited to fault detection, which fails to consider important diagnostic information needed for process recovery. Modern measurement technologies should spur the transformation of statistical process control (SPC) to provide practitioners with additional diagnostic information. This dissertation focuses on how MVSs and 3D laser scanners can be further utilized to meet that goal. More specifically, this work: 1) reviews image-based control charts while highlighting their advantages and disadvantages; 2) integrates spatiotemporal methods with digital image processing to detect process faults and estimate their location, size, and time of occurrence; and 3) shows how point cloud data (3D laser scans) can be used to detect and locate unknown faults in complex geometries. Overall, the research goal is to create new quality control tools that utilize high density data available in manufacturing environments to generate knowledge that supports decision-making beyond just indicating the existence of a process issue. This allows industrial practitioners to have a rapid process recovery once a process issue has been detected, and consequently reduce the associated downtime. / Ph. D.

Page generated in 0.1091 seconds