• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prestandajämförelse mellan Xception, InceptionV3 och MobileNetV2 för bildklassificering på nätpaneler / Performance comparison between Xception, InceptionV3 and MobileNetV2 for image classification on mesh panel

Birindwa, Fleury January 2020 (has links)
Under de senaste året har modeller för djupinlärning använts inom nästa alla områden, från industri till akademi, särskilt för bildklassifikation. Dessa modeller är dock enorma i storlek, med miljontals parametrar, vilket gör det svårt att distribuera till mindre enheter med begränsade resurser såsom mobiltelefoner. Denna studie tar upp små modeller av faltningsnätverk som är toppmoderna inom djupinlärning och vars storlek är lämplig för mobilapplikation. Syftet med denna studie är att utvärdera prestanda på faltningsnätverken Xception, InceptionV3 och MobilNetV2 för att underlätta vid valbeslut av faltningsnätverk som bas vid utveckling av mobila applikation inom bildklassificering. För att uppnå syftet har dessa faltningsnätverk implementeras med hjälp av överföringsinlärning metod samt utformas för att skilja på bilder av nätpaneler från företaget Troax. Studien tar upp metoden som möjliggör att överföra kunskap från befintliga förtränade modeller till nya modeller. Studien förklarar även hur träningsprocessen och testprocessen gick till samt analys kring resultatet.   Resultat visade att Xception hade 86 % noggrannhet med en processtid på 10 minuter på 2000 träningsbilder och 1000st testbilder. Xceptions prestation var bäst bland alla dessa modeller. Skillnaden mellan Xception och Inception var på 10 % noggrannhet och 2 minuter processtid. Mellan Xception och MobilNetV2 var skillnaden på 23 % noggrannhet och 3 minuter processtid. Experimentet visade att dessa modeller presterade mindre bra vid mindre träningsbilder under 800st. Över 800st bilder började respektive modell att utföra prediktering över 70 % noggrannhet. / In recent years, deep learning models have been used in almost all areas, from industry to academia, specifically for image classification. However, these models are huge in size, with millions of parameters, making it difficult to distribute to smaller devices with limited resources such as mobile phones. This study addresses lightweight pre-trained models of convolutional neural networks which is state of art in deep learning and their size is suitable as a base model for mobile application development. The purpose of this study is to evaluate the performance of Xception, InceptionV3 and MobilNetV2 in order to facilitate selection decisions of a lightweight convolutional networks as base for the development of mobile applications in image classification. In order to achieve their purpose, these models have been implemented using the Transfer Learning method and are designed to distinguish images on mesh panels from the company Troax. The study takes up the method that allows transfer of knowledge from an existing model to a new model, explain how the training process and the test process went, as well as analysis of results. Results showed that Xception had 86% accuracy and had 10 minutes processing time on 2000 training images and 1000 test images. Exception’s performance was the best among all these models. The difference between Xception and InceptionV3 was 10% accuracy and 2 minutes process time. Between Xception and MobilNetV2 there was a difference of 23% in accuracy and 3 minutes in process time. Experiments showed that these models performed less well with smaller training images below 800 images. Over 800 images, each model began to perform prediction over 70% accuracy.

Page generated in 0.0597 seconds