Spelling suggestions: "subject:"machines thermiques"" "subject:"achines thermiques""
1 |
Utilisation de la thermodynamique à vitesse finie pour l'étude et l'optimisation du cycle Carnot et des machines de StirlingPetre, Camelia Feidt, Michel Petrescu, Stoian. January 2007 (has links) (PDF)
Thèse de doctorat : Mécanique, Energétique : Nancy 1 : 2007. Thèse de doctorat : Mécanique, Energétique : Université Politehnica de Bucarest : 2007. / Thèse soutenue en co-tutelle. Titre provenant de l'écran-titre. Bibliogr.
|
2 |
Contribution à l'étude des machines thermiques à adsorption.Chahid, Mohammed, January 1900 (has links)
Th. 3e cycle--Méc.--Nancy--I.N.P.L., 1985.
|
3 |
Energy management at the quantum scale : from thermal machines to energy transport / Manipulation d'énergie à l'échelle quantique : des machines thermiques au transport d'énergieDoyeux, Pierre 20 November 2017 (has links)
Cette thèse traite de la manipulation de l'énergie dans trois systèmes quantiques ouverts différents dans la limite de couplage faible système-environnement, et leurs dynamiques respectives sont décrites par une équation maîtresse quantique markovienne. Dans le premier chapitre, le calcul d'une telle équation est réalisé pour un système particulier, et diverses notions de thermodynamique quantique sont introduites. Pour le premier système physique, on analyse le transport d'énergie le long de chaînes atomiques (entre 2 et 7 atomes) soumises à un rayonnement de corps noir proche de la température ambiante. Il est montré que l'efficacité du transport peut atteindre des valeurs remarquables, surpassant 100% et atteignant jusqu'à 1400% dans certaines configurations. De plus, lorsque l'efficacité est amplifiée, la portée du transport est également considérablement augmentée. Le chapitre suivante traite aussi du transport d'énergie dans des chaînes atomiques. Le système quantique est placé à l'interface d'un isolant topologique photonique (ITP), qui supporte un plasmon polariton de surface (PPS) insensible à la réflexion. Le PPS se propage le long de la chaîne atomique et assiste le transport d'énergie. La comparaison est faite entre PPSs réciproque et unidirectionnel en termes d'efficacité du transport, et il est démontré que ce dernier produit une meilleure efficacité, de plus d'un ordre de grandeur. De surcroît, divers aspects pratiques dus aux propriétés des ITPs sont mis en avant, notamment la robustesse du transport d'énergie en présence de défauts sur le parcours du PPS. Enfin, un système quantique immergé dans un champ électromagnétique hors équilibre thermique est étudié. Il est composé d'un système à trois niveaux d'énergie, jouant le rôle de machine thermique quantique à absorption, ainsi que de N atomes à deux niveaux ("qubits") qui sont affectés par l'action de la machine. Il est montré que la machine est capable de délivrer des tâches thermiques d'intensité significative sur les qubits, y compris lorsque leur nombre augmente. De plus, il est mis en évidence qu'en raison d'interactions qubit-qubit, les tâches réalisées par la machine sont distribuées parmi l'ensemble du système des qubits en interaction, de sorte que dans certains cas, même les qubits complètement découplés de la machine subissent une modification de température considérable. Ce mécanisme de distribution des tâches est analysé à travers les corrélations entre différentes partitions du système quantique. Par ailleurs, le contrôle des tâches thermiques est également discuté. / This thesis deals with energy management in open quantum systems. Three different systems are under study in the limit of weak system-environment coupling, and their dynamics is described by Markovian quantum master equations. In the first chapter, the complete derivation of such equation is performed in a specific case, and several notions of quantum thermodynamics are introduced. In the first system, energy transport is investigated along atomic chains (between 2 and 7 atoms) embedded in blackbody radiation around room temperature. It is shown that the transport efficiency can reach remarkable values, exceeding 100% and reaching 1400% in some configurations. Moreover, when the efficiency is amplified, the transport range is also considerably increased. The following chapter also deals with energy transport in atomic chains. The quantum system is located at the interface of a photonic topological insulator (PTI), supporting a unidirectional surface-plasmon-polariton (SPP) immune to backscattering. The SPP propagates along the chain and assists energy transport. Comparison is made between reciprocal and unidirectional SPPs in terms of transport efficiency, and it is shown that the latter can yield an efficiency larger by one order of magnitude. In addition, several practical aspects stemming from PTIs are highlighted, including the robustness of energy transport in the presence of defects on the SPP path. In the last chapter, a quantum system embedded in an out-of-thermal-equilibrium electromagnetic field is investigated. It is composed of a three-level atom playing the role of an absorption quantum thermal machine, as well as N two-level atoms ('qubits'), with N=1,...,6, which are the target bodies. It is demonstrated that the machine is able to perform significant thermal tasks on the qubits, even when their number is increased. Moreover, it is pointed out that due to qubit-qubit interactions, the tasks delivered by the machine are distributed throughout the system of interacting qubits, such that in some cases the temperature of the qubits which are completely decoupled from the machine can still be considerably affected by it. This task-distribution mechanism is investigated by means of the correlations between different subparts of the system. In addition, the tuning of thermal tasks is discussed.
|
4 |
Machine thermique nano-électro-mécanique / Nano electro mechanical heat engineDescombin, Alexis 18 October 2019 (has links)
L'objectif de cette thèse est l'étude des échanges et de la dissipation d'énergie aux échelles mésoscopiques, à travers l'étude de nanotubes, de nanofils ou de pointes taillées par exemple. Notre intérêt pour la dissipation d'énergie nous portera vers les NEMS (Nano Electro Mechanical Systems) et leur facteur de qualité. Pour étudier les échanges d'énergie nous nous intéresserons à la thermodynamique aux petites échelles et notamment aux machines thermiques qui exploitent ces échanges d'énergie pour extraire un travail utile (mécanique, électrique...). Ce travail se concentre dans un premier temps sur la dissipation d'énergie et plus particulièrement sur le facteur de qualité de nanotubes de carbone mono-paroi à température ambiante et sur la façon de l'augmenter par application d'une tension électrique. Cette tension électrique induit un fort tirage sur le nanotube et la modification concomitante de la forme du mode résonant modifie la dissipation d’énergie. Ce phénomène, couplé à une modification des propriétés de l’ancrage (effet d’ancrage mou ajustable en tension) résultant également de la tension, diminue drastiquement la dissipation d’énergie et on atteint alors des facteurs de qualité record. Dans un second temps, nous nous intéressons aux machines thermiques : une machine stochastique cyclique et une machine électrique continue. La machine thermique stochastique est réalisée avec un nanofil vibrant sous ultra haut vide. La thermodynamique stochastique permet de redéfinir le travail et la chaleur pour un objet qui stocke des quantités d’énergies similaires aux fluctuations du bain thermique avec lequel il est en contact. Le premier objectif est de réaliser un cycle de Carnot permettant d'atteindre le rendement du même nom, inaccessible pour les machines macroscopiques. Pour la machine thermique continue nous étudions numériquement un prototype de machine thermique électrique basé sur des effets de résonance d'effet tunnel qui pourrait être une amélioration du principe des machines thermoïoniques. L’utilisation de l’effet tunnel permet à priori de réduire la température de la source chaude de la machine puisque l’on a plus besoin de vaincre le travail de sortie des deux électrodes. Les résonances dans l’effet tunnel, obtenues par confinement dans une dimension, permettent un filtrage en énergie des électrons passant d’un réservoir thermique à l’autre, ce qui a pour effet d’améliorer le rendement de la machine / The purpose of this work is the study of energy transfer and dissipation at the mesoscopic scale, through the study of nanotubes, nanowires, or sharp tips for example. Our interest for energy dissipation will lead us to dive into Nano Electro Mechanical Systems (NEMS) and their quality factor. Energy transfers will be studied with small scale thermodynamics and stochastic heat engines which use those energy transfers to produce useful work (mechanical, electrical…). This work is focused in a first time on the energy dissipation and particularly on the quality factor of single wall carbon nanotubes at room temperature and the ways to improve it by applying an electrical voltage. This voltage induces a strong pulling on the nanotube and the resulting vibrating shape modification changes the dissipation. This phenomenon, coupled with a clamping modification (tunable soft clamping) also stemming from the voltage, drastically reduces the dissipation. We can then achieve record high quality factors. In a second time we take interest in heat engines: a stochastic cyclic heat engine and a continuous electrical heat engine. The stochastic heat engine is realized with a vibrating nanowire under high vacuum. The stochastic thermodynamics allow us to redefine work and heat for an object that stores energies of the order of magnitude of thermal fluctuations in the thermal bath it interacts with. The aim is to build a Carnot cycle and achieve the corresponding yield, out of reach for macroscopic engines. Concerning the continuous heat engine we study numerically a prototype for an electrical heat engine based on resonant tunneling which could be an improvement of the thermionic heat engines. Allowing the thermal reservoirs to exchange electrons through tunneling allows in principle to reduce the temperature of the hot source because overcoming the work function of both electrodes is not necessary anymore. The resonances in the tunnel effect, obtained through confinement of one dimension, is useful for filtering the energy of the electrons tunneling from one reservoir to another, thus increasing the yield of the heat engine
|
5 |
Développement de méthodes thermodynamiques pour l'ingénieur : étude analytique et expérimentale de machines quasi-Carnot et Stirling / Contributions to the development of some methods of the engineering irreversible thermodynamics : applied in the analytical and experimental study of quasi-Carnot machines and stirling / Contribuƫii la dezvoltarea unor Metode ale Termodinamicii Ireversibile Inginereşti : aplicate în studiul analitic şi experimental al maşinilor Stirling şi cvasi-CarnotDobre, Catalina Georgiana 28 September 2012 (has links)
La première partie de la thèse comporte l’étude des machines à froid, en tenant compte de la vitesse finie des processus. L’approche est basée sur une nouvelle méthode d’optimisation des processus et cycles à vitesse finie, la Méthode Directe d’étude et évaluation des irréversibilités. Les performances de ces cycles sont évaluées en prenant en compte les irréversibilités internes générées par la vitesse finie, notamment (1) les pertes de pression dues au laminage, (2) les pertes de pression dues à la vitesse finie du piston, (3) les pertes de pression dues aux frottements interne et mécanique et (4) l’irréversibilité due aux pertes de chaleur. On obtient ainsi directement l'expression du rendement ou du coefficient de performance et de la génération d’entropie en fonction de la vitesse des processus et d'autres paramètres géométriques et fonctionnels. Le travail proposé pour cette partie de thèse analyse la génération des irréversibilités dans une machine thermique fonctionnant selon le cycle inverse quasi-Carnot (Machine Frigorifique à compression mécanique des vapeurs), en proposant un schéma de calcul complètement analytique. A l’aide de ce schéma de calcul on peut développer des études de sensibilité et d’optimisation de ces machines, sans avoir besoin d’utiliser de tableaux des vapeurs saturés.La deuxième partie du mémoire présente l’application des modèles thermodynamiques (la Méthode Directe, la Méthode de la Thermodynamique en Dimensions Physiques Finies (TDPF), la méthode isotherme de Schmidt, la méthode adiabatique de Finkelstein) dans l’étude des machines Stirling – moteurs et récepteurs et confrontation avec l’expérience.La Méthode de la TDPF est une méthode qui regroupe les techniques de la thermodynamique en temps, vitesse et dimensions géométriques finies. Cette méthode introduit les exo-irréversibilités dues aux transferts de chaleur finis entre les réservoirs (source chaude, puits froid, régénérateur) et le fluide de travail et, de plus, considère les contraintes qui se présentent à l’ingénieur (la pression maximale, le volume maximum, les températures des réservoirs chaud et froid, la vitesse de rotation). La méthode isotherme de Schmidt est une méthode zéro-dimensionnelle qui permet l’étude de la machine divisée en trois volumes isothermes. Elle permet de décrire l’évolution de paramètres, comme le volume instantané (chaud, froid ou de régénération) ou la pression en fonction du temps. L’analyse des processus de transfert de la chaleur et d’écoulement du gaz de travail, ayant lieu dans le moteur Stirling d’un micro-cogénérateur, est effectuée en utilisant un model adiabatique monodimensionnel. Cette analyse repose sur la division du moteur Stirling en 5 volumes de control auxquels on applique les équations des gaz parfaits et les équations de conservation de masse et d’énergie.Les résultats expérimentaux seront confrontés à ceux obtenus par les quatre méthodes de calcul, ce qui permettra de définir les paramètres d’ajustage afin de valider les modèles thermodynamiques. Cette confrontation permettra le développement d’une autre méthode, une combinaison des trois approches utilisées afin de modéliser au mieux le fonctionnement du système, préservant les avantages de chacune sur des intervalles de vitesse de rotation donnés.Des études de sensibilité et d’optimisation de paramètres géométriques et fonctionnels seront effectuées afin de proposer des améliorations de mise au point système pour fournir puissance et de rendement plus élevés. / This paper presents the author's overall results obtained in his doctoral thesis, on: The analysis of entropy generation and the evaluation of the performances of the inversed cvasi-Carnot cycle; The application of the Direct Method, Finite Physical Dimensions Thermodynamics method (TDFF), Schmidt’s isotherm method and Finkelstein’s adiabatic model in the study of Stirling engines – engines and machines that function on reversed cycles (receivers) and the confrontation of analytical results with the experimental ones. The first part of the thesis covers the study of the refrigeration machines, considering the finite speed of the processes. The study is based on a new method to optimize the processes and the cycles with finite speed, the Direct Method of study and the evaluation of the irreversibilities. The performance of these cycles are evaluated using analytical relations, considering internal irreversibilities generated by finite speed, especially the pressure losses due to (1) throttling (2) finite speed of the piston (3) internal and mechanical friction (4) irreversibilities due to heat losses. These irreversibilities are introduced in the expression of the First Principle of Thermodynamics for processes with finite speed, and its application leads directly and through analytical means to the expressions of efficiency or coefficient of performance and entropy generation, function of the finite speed of the processes and other geometrical and functional parameters of the machine. The proposed study for this first part of the thesis analyzes the generation of thermal irreversibilities in a thermal machine functioning on a cvasi-Carnot reversed cycle (refrigerating machine with mechanical compression of vapor-IFV) proposing a completely analytical calculation scheme. With this calculation scheme sensitivity studies and optimization of these types of machines were developed, without having to use saturated vapor tables.The second part of the thesis presents the application of thermodynamic models (Direct Method, Finite Physical Dimension thermodynamics method, Schmidt's isotherm model and Finkelstein’s adiabatic model) in the study of Stirling engines – engines and machines that function on reversed cycles (receivers) and the confrontation of analytical results with the experimental ones. The Direct Method consists in the study and assessment of the irreversibilities generated in thermal machines by analyzing the cycle step by step (progressive) and the direct integration of the equation the First Principle of Thermodynamics combined with the Second Principle of Thermodynamics with finite speed, for each process of the cycle. This provides analytical expressions for power and efficiency or coefficient of performance COP, function of the speed of the processes and other geometric and functional parameters.
|
Page generated in 0.0789 seconds