• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • 3
  • Tagged with
  • 27
  • 13
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution to the study of deformation twinning in titanium / Contribution à l'étude des macles de déformation dans un alliage de titane

Bao, Lei 21 June 2011 (has links)
Le titane et ses alliages sont largement utilisés dans les domaines aéronautique, spatial, de l’armement, du génie civil, dans des applications commerciales et biomédicales en raison de sa résistance à la rupture élevée, d'une bonne ductilité et d'une grande biocompatibilité. Les mécanismes de la déformation plastique du titane ont été étudiés en détail par le passé, particulièrement sur l'étude de la déformation par maclage car il a une grande influence sur les propriétés mécaniques. Une méthode d’essais "in situ" en EBSD basée sur des tôles polies et colées ensemble a été développée dans cette étude et utilisée en laminage et en compression plane. Avec cette méthode, des mesures EBSD sont effectuées à chaque étape de la déformation dans la même zone comprenant un grand nombre de grains. Par conséquent, l'information sur l'orientation de ces grains à chaque l'étape de la déformation est mesurées. Le maclage apparait dans les grains qui ont des orientations particulières. En règle générale, la réorientation induite par le maclage aligne l'axe c de la partie maclées vers les orientations stables de la texture de laminage, de sorte qu'aucun autre maclage secondaire peut être induit. Le maclage secondaire se produit uniquement lorsque le macle primaire envoie l’axe c loin des orientations stables. Pour les grains maclés, la rotation du réseau de la matrice est semblable à celle des grains ayant une orientation cristallographique identique mais sans macles. Deux types de systèmes de macles ont été activés au cours de la déformation à la température ambiante: des macles de tension (10-12) et des macles de compression (11-22). Dans le maclage primaire, les résultats montrent que les variantes de macle ayant des facteurs Schmid supérieurs à 0.4 ont une bonne chance d'être actifs. Les comportements des deux types de maclage sont complètement différents. Dans la déformation en compression, les macles (11-22) montrent le comportement de type multiplication des variants (Multiply Variants System: MVS) alors que les macles (10- 12) montrent le type de maclage prédominant (Predominant Twin System: PTS). Cette étude présente deux types de macles doubles dénommées C-T1 (= macle primaire de Compression et macle secondaire de Tension) et T1-C (= macle primaire de Tension et macle secondaire de Compression). Tous les variants sont classés seulement en trois groupes: A, B et C par symétrie cristallographique. Les désorientations de ces 3 groupes par rapport à l’orientation de la matrice sont respectivement de 41.34°, 48.44° et 87.85°.Une forte de sélection de variant se déroule dans le maclage double. Pour les macles doubles CT, 78.9% des variantes appartiennent à la B et pour T1-C, 66.7% des variantes appartiennent à C. Le facteur de Schmid joue un rôle prépondérant dans la sélection des variants des macles doubles. Les caractéristiques géométriques, associant “ volumes communs ” et l’accommodation de la déformation ne contribuent pas de manière significative à la sélection des variants / Titanium and its alloys are widely used in aviation, space, military, construction and biomedical industry because of the high fracture strength, high ductility and good biocompatibility. The mechanisms of plastic deformation in titanium have been studied in detail, especially deformation twinning since it has a great influence on the ductility and fracture strength. In this study, an interrupted “in situ” SEM/EBSD investigation based on a split sample of commercial titanium T40 was proposed and performed in rolling and channel die compression. This approach allows to obtain the time resolved information of the appearance of the twin variants, their growth, the interaction between them and the interaction with the grain boundaries or twin boundaries. With the orientation data acquired by the EBSD technique, we calculated the Schmid factor, crystallographic geometry, and plastic energy associated with each variant of primary twins, secondary twins and double twins to investigate the lattice rotation, the activation of twins, the growth of twins, and the variant selection criterion. In this observation, two types of twin systems were activated: {10-12} tension and {11-22} compression twins. Secondary twins were also activated, especially the twin variants with the highest Schmid factors (e.g. higher than 0.4). The growth of the two types of twin is quite different. The {11-22} twin shows Multiple Variants System (MVS) whereas the {10-12} twin shows Predominant Variant System (PVS). The twinning occurs in grains that have particular orientations. Generally, the reorientation induced by the twinning aligns the c-axis of the twinned part to the stable rolling texture orientations, so that no further secondary twinning can be induced. The secondary twinning occurs only when the primary twinning orientates the c-axis of the primary twins far away from the stable orientations. For twinned grains, the lattice rotation of the matrix is similar to that of the grains having a similar crystallographic orientation but without any twin. Two sets of double twins were observed in this study, classified as C-T1 and T1-C double twins respectively. All the variants of C-T1 and T1-C double twins were classified into three groups: A, B and C according to the crystallographic symmetry. The misorientations of theses three groups with respect to the matrix are 41.34°, 48.44° and 87.85°. Strong variant selection took place in double twinning. In C-T1 double twins, 78.9% variants belong to group B whereas in T1-C double twins, 66.7% variants belong to group C. The plastic energy and Schmid factor both play important roles in the variant selection of double twinning. Geometrical characteristics, like the common volume or strain accommodation do not contribute significantly to the variant selection
2

Modélisation polycristalline et étude expérimentale du comportement mécanique d'aciers Fe-Mn à l'effet TWIP : prise en compte du traitement thermique d'élaboration sur le maclage et les contraintes internes / Modelling and experimental study of the mechanical behaviour of Fe-Mn twip steels : taking into account the heat treatment on twinning and internal stresses

Shiekhelsouk, Mohamad Najeeb 17 September 2007 (has links)
Les aciers à effet TWIP (TWinning Induced Plasticity) suscitent un regain d'intérêt au niveau de la sidérurgie mondiale car ils combinent simultanément très haute résistance mécanique et très grande ductilité. Ces excellentes propriétés mécaniques sont liées à la présence de maclage mécanique, mécanisme connu sous le nom d'effet TWIP. L'objectif majeur de cette thèse est d'étudier l'effet TWIP sur plusieurs nuances d'aciers Fe-Mn (entièrement austénitiques, austéno-ferritiques duplex) afin de développer une loi de comportement prédictive des aciers à effet TWIP. La première partie de cette thèse fut donc consacrée à la détermination du comportement des aciers austénitiques Fe-Mn-C à effet TWIP. Pour ce faire, un modèle micromécanique par transition d'échelle en élastoviscoplasticité a été développé en se basant sur une description physique des mécanismes de déformation considérés dans cette étude: glissement cristallographique et maclage mécanique. Les interactions macle-glissement et macle-macle en relation avec le comportement de l'écrouissage à l'échelle du polycristal et à l'échelle du grain ont été finement analysé. La seconde partie de ce travail a été consacrée à la caractérisation du comportement d'aciers duplex Fe-Mn-Al-C par la Diffraction des Rayons X afin d'évaluer les contraintes internes initiales dans les deux phases ainsi que leur évolution avec la déformation au cours d'un essai mécaniques in situ. Une modélisation du comportement d'aciers duplex a été établie dans le but de développer un outil d'optimisation de la microstructure (proportion de la phase ferritique/austénitique) dans une approche "Alloy design". Puis, des essais de traitement thermique ont été faits afin de favoriser le maclage dans les aciers duplex / Steels having TWIP effect (TWinning Induced Plasticity) are very interesting for the worldwide siderurgy, because they simultaneously combine very high mechanical strength and ductility. These excellent mechanical properties are related to the presence of mechanical twinning, the so-called TWIP effect. The major objective of this thesis is to study the TWIP effect on several grades of Fe-Mn steels (entirely austenitic, austeno-ferritic duplex) in order to develop a predictive behavior law of steels with TWIP effect. The first part of this work consisted of the modelling of the behavior of Fe-Mn-C austenitic steels having TWIP effect. A micromechanical model using the scale transition method in elastoviscoplasticity has been developed. It is based on a physical description of the deformation mechanisms considered in this study: crystallographic slip and mechanical twinning. The twin-slip and twin-twin interactions in relation with the hardening behaviour at the polycrystal scale and the grain scale have been finely analyzed.The second part of this work is concentrated on the characterization of the behavior of Fe-Mn-Al-C duplex steels by X-rays diffraction in order to evaluate the initial internal stresses in the two phases as well as their evolution with the deformation during an in situ tensile test. A modeling of the duplex steel behavior was established in order to develop an optimization tool of the microstructure (proportion of the ferritic/austenitic phase) in an approach "Alloy design". Then, tests of heat treatment were made in order to generate the TWIP effect in the duplex steels
3

Study on crystallographic features of Ni-Mn-Ga ferromagnetic shape memory alloys / Etudes de caractéristiques cristallographiques d'alliages à mémoire de forme ferromagnétiques Ni-Mn-Ga

Li, Zongbin 09 October 2011 (has links)
Dans ce travail, les caractéristiques cristallographiques des martensites d’alliages Ni-Mn-Ga ont été étudiées en détail. En utilisant l’information de la superstructure de martensite 5M de Ni50Mn28Ga22 et de martensite 7M de Ni50Mn30Ga20 pour des mesures en EBSD, les structures cristallines ont été confirmées. Le nombre de variantes, les relations d’orientation entre les variantes adjacentes et les plans d’interface des variantes ont été déterminées sans ambiguïté. Sur la base de données d’orientations précises des variantes de martensite, les relations d’orientation de transformation de l’austénite en martensite 5M et de l’austénite en martensite 7M ont été déterminées, sans présence de l’austénite résiduelle. Pour la martensite NM de Ni54Mn24Ga22, les lamelles de macles à l’échelle nanométrique dans les platelets martensitiques ont été révélées. Les interfaces entre les platelets et entre les lamelles ont été analysées. Dans un alliage Ni53Mn22Ga25 avec coexistence de l’austénite et de la martensite à température ambiante, la formation de la microstructure martensitique en forme de losange avec quatre variantes lors de la transformation de l’austénite en martensite 7M a été mise en évidence. La nature de la martensite 7M a été clairement précisée dans ce travail. Elle est thermodynamiquement métastable et intermédiaire entre l’austénite parent et la martensite NM finale. La martensite 7M possède une structure cristalline indépendante, plutôt que la combinaison de macles nanométrique de martensite non modulée. Le rôle de la martensite 7M dans la transformation est d’atténuer le décalage important entre la maille de l’austénite cubique et celle de la martensite tétragonale et d’éviter la formation d’interfaces incohérentes entre les platelets de martensite NM, qui constituent une barrière énergétique infranchissable / In this work, the crystallographic features of martensites in Ni-Mn-Ga alloys were detailed studied. By using superstructure information for EBSD mapping on 5M martensite in Ni50Mn28Ga22 alloy and 7M martensite in Ni50Mn30Ga20 alloy, the crystal structures were confirmed and the variant number, twin orientation relationships of adjacent variants and twin interface planes were unambiguously determined. Based on the accurate orientation data of martensite variants, the transformation ORs for austenite-5M and austenite-7M were indirectly determined with no presence of initial austenite. For the NM martensite of Ni54Mn24Ga22, the nano-scale twin lamellae in martensitic plates were revealed, and the inter-plate interfaces and inter-lamellar interfaces were analyzed. In a Ni53Mn22Ga25 alloy with co-existence of austenite and martensite at room temperature, the formation of characteristic diamond-like martensite microstructure with four variants during the austenite-7M martensite transformation was evidenced. The 7M martensite occurs on cooling as a thermodynamically metastable phase that is intermediate between the parent austenite and the final NM martensite. 7M martensite possesses an independent crystal structure, rather than the nanotwin combination of normal non-modulated martensite. The role of 7M martensite in the transformation from the cubic austenite to the tetragonal NM martensite has been clarified, which is at the request of mitigating the large lattice mismatch between the cubic austenite and the tetragonal NM martensite and avoiding the formation of the incoherent NM plate interfaces that represent insurmountable energy barrier
4

Contrôle du maclage thermique et de la taille de grains par traitements thermomécaniques dans deux superalliages base de Ni

Souai, Nadia 22 December 2011 (has links) (PDF)
Cette thèse porte sur l'évolution de la microstructure de superalliages à base de Nickel au cours de traitements thermomécaniques, avec une attention particulière portée sur la taille de grains et la quantité de macles thermiques. Ce travail a été réalisé dans l'optique d'évaluer la possibilité d'optimiser les propriétés de service par le principe de l'ingénierie de joints de grains. Les matériaux étudiés sont principalement l'alliage PER®72, et de manière exploratoire l'alliage N19. Ces deux matériaux appartiennent à la famille des superalliages à base de nickel à durcissement structural élaborés par voie conventionnelle (coulé et forgé) et par métallurgie des poudres respectivement. Deux modes de déformation, la torsion et la compression, ont été testés. Nous avons démontré que le maclage thermique est favorisé par les grandes vitesses de migration des joints de grains, essentiellement induites par (1) leur courbure qui diminue lorsque la taille de grains augmente et (2) les gradients de densité de dislocations produits par les faibles déformations appliquées à grande vitesse qui peuvent maintenir des vitesses de migration élevées même lorsque la taille de grains augmente. La force motrice associée à la courbure est en outre sensible à la distribution de taille de grains, qui s'est avéré être un paramètre microstructural important. La force motrice associée aux gradients de densité de dislocations peut par ailleurs permettre le franchissement des précipités primaires malgré la force de freinage de Zener qui s'exerce sur les joints de grains, ceci au cours de la déformation comme au cours d'un recuit subsolvus. L'occurrence ou la non-occurrence de la recristallisation dynamique au cours de la phase de déformation s'est ainsi avérée être une condition décisive pour l'évolution de la microstructure au cours d'un recuit ultérieur dans le domaine sub- ou super-solvus. Les conditions thermomécaniques de mise en forme permettent donc de moduler la taille de grains et la quantité de macles, même à l'issue d'un traitement supersolvus final.
5

Mechanisms of plastic deformation of magnesium matrix nanocomposites / Mécanismes de déformation plastique des nanocomposites à base de magnésium

Mallmann, Camila 18 November 2016 (has links)
Le magnésium est le plus léger des métaux, ce qui lui confère un fort potentiel pour être utilisé dans des applications où l’allégement des structures est requis. Pour autant, sa résistance mécanique est très faible, et doit donc être augmentée afin de rivaliser avec d’autres métaux légers tels que l’aluminium ou le titane. Une solution consiste à renforcer le magnésium et ses alliages en introduisant des nanoparticules d’oxydes. De par sa structure cristalline hexagonale compacte, le magnésium présente des propriétés plastiques complexes telles qu’une très forte anisotropie plastique et une prédisposition au maclage. La compréhension de ces mécanismes de déformation est essentielle pour le développement de nanocomposites plus performants en vue d’une utilisation industrielle plus répandue. Dans ce travail, nous nous sommes intéressés à l'élaboration et à la caractérisation de nanocomposites de magnésium pur renforcés par des particules d’oxydes. Différentes techniques ont été testées pour l’élaboration des nanocomposites : la solidification assistée aux ultrasons et le procédé de friction malaxage. L’homogénéité de la dispersion des particules a été vérifiée en 2D par observations en microscopie électronique et également en 3D par tomographie aux rayons X. On montre ainsi que le procédé de friction malaxage permet d'obtenir une distribution homogène des particules, tout en réduisant leur taille. Des essais de traction ont permis de mettre en évidence une augmentation de la limité d’élasticité pour une fraction volumique aussi faible que 0.3 %. Afin d’isoler le rôle des particules de celui des joints de grains sur le comportement plastique du nanocomposite, nous avons réalisé des essais de micro-compression sur des micro-piliers monocristallins usinés par canon à ions focalisés (FIB) dans des échantillons ayant préalablement subis un traitement thermique favorisant la croissance anormale des grains. Différentes orientations cristallines et tailles de micro-piliers ont été testées en vue d'étudier l’influence des particules d’une part sur la plasticité dans le plan basal par mouvement de dislocations et d’autre part sur la déformation par maclage. Contre toute attente, les essais sur monocristaux favorablement orientés pour un glissement basal ne montrent pas l’effet durcissant observé macroscopiquement. Nous attribuons cet effet à la densité initiale de dislocations mobiles, plus importante dans les nanocomposites que dans le magnésium pur, du fait des concentrations de contraintes autour des particules. Ces densités initiales de dislocations mobiles tendent également à supprimer l'effet de taille classiquement observé dans le magnésium pur. Les particules modifient également le mécanisme de déformation par maclage en favorisant l’apparition simultanée de plusieurs macles dans le micro-pilier qui interagissent entre elles au cours de la déformation alors que les micro-piliers de magnésium pur présentent généralement une macle unique (dans certains cas deux) qui envahi tout le monocristal. Ces résultats constituent une contribution originale à la compréhension du rôle des nanoparticules dans la déformation plastique des monocristaux de nanocomposites à base de magnésium. / Magnesium is the lightest of all structural metals, which gives it a huge potential to be used in applications that require lightweighting. However, its strength needs to be increased in order to compete with other light metals such as aluminum and titanium. A solution is the reinforcement of magnesium and its alloys with the addition of oxide nanoparticles. The hexagonal close packed crystalline structure is responsible for the complex plasticity of magnesium, which is characterized by a very strong plastic anisotropy as well as a complex twinning activity. Understanding these deformation mechanisms is crucial for the development of more performant nanocomposites, allowing widespread industrial application. The present work focuses on the processing and characterization of magnesium based nanocomposites reinforced with oxide particles. Two different processing techniques have been compared: friction stir processing and ultrasound assisted casting. The homogeneity of the dispersion of the reinforcement particles has been verified in 2 and 3 dimensions using electron microscopy and X-ray tomography, respectively. Friction stir processing produces nanocomposites with a more homogeneous dispersion of particles, while reducing their size. Tensile tests have shown strengthening of magnesium with the addition of a volume fraction of only 0.3 % of reinforcement. An annealing heat treatment has then been performed in order to promote abnormal grain growth and single crystalline microcolumns for microcompression testing have been machined by focused ion beam (FIB). The purpose is to isolate the role of particles. The orientation dependent mechanism of deformation and the size effects have been studied in order to understand the influence of the reinforcement particles on the plasticity for orientations favorable for basal slip or tensile twinning. Differently from the strengthening observed macroscopically, no clear strengthening effect is observed on microcolumns when dislocation glide operates. The reason is the higher density of potentially mobile dislocations that is generated due to stress concentrations around the reinforcement particles. In addition, the size effects usually observed on pure magnesium have also been suppressed with the addition of particles. The reinforcement particles seem to affect the twin nucleation stress and twin morphology: particles induce the nucleation of multiple twins inside a microcolumn, whereas in pure magnesium, only one or two twins have been observed. These results provide relevant insights on the role of nanoparticles on the onset of plastic deformation, as well as size effect, in single crystalline magnesium nanocomposites.
6

Modélisation Multiéchelle du Comportement Mécanique d'un Matériau Energétique : Le TATB / Multiscale Modeling of the Mechanical Behavior of an Energetic Material : TATB

Lafourcade, Paul 19 September 2018 (has links)
The construction of mesoscopic (micrometer scale) constitutive laws in materialsscience is studied for a long time. However, the constant progress in high performance computing changes the perspectives. Indeed, constitutive laws now aim at explicitly take into account the microstructure and its underlying physics at the atomic scale, for which simulation techniques prove to be very accurate but definitely expensive. The multiscale approach is therefore perfectly adapted to such a challenge and the dialogue between scales necessary. In this thesis, the mechanical behavior of the energetic material TATB in temperature and pressure is investigated using molecular dynamics simulations in order to understand the microscopic deformation mechanisms responsible for plastic activity. The local computation of mechanical variables was developed in atomistic simulations, allowing the dialogue with continuum mechanical methods. Additionally, prescribed deformation paths were coupled with molecular dynamics, allowing to reveal the plasticity mechanism of TATB single crystal. Nucleation of complex dislocation structures with intrinsic dilatancy, twinning transition pathway and a twinning-buckling pseudo phase transition are three distinct behaviors triggered for different loading directions. Then, mesoscopic simulations inferred by atomic scale observations aim at reproducing the twinning-buckling pseudo-phase transition under tri-axial compression using a Lagrangian code. The comparison between both simulation techniques is made possible thanks to the mechanical tools that have been implemented in themolecular dynamics code. Finally, polycrystalline TATB is simulated with non linear elasticity and we demonstrate the necessity to consider an equation of state compatible with this pseudo phase transition, which has a strong influence on the polycristal behavior. / La conception de lois de comportement en science des matériaux n’est pas nouvelle. Cependant, le progrès constant en calcul haute performance change la donne. En effet, ces lois visent désormais à tenir compte de la microstructure et de la physique sous-jacente, à l’échelle atomique, pour laquelle les techniques de simulation sont précises mais très coûteuses. L’approche multiéchelles semble parfaitement adaptée à ces problématiques et le dialogue entre échelles nécessaire. Dans cette thèse, le comportement mécanique du matériau énergétique TATB en température et en pression est étudié via des simulations de dynamique moléculaire afin de caractériser les mécanismes microscopiques responsable de son comportement irréversible. Le calcul local de variables mécaniques a été développé dans des simulations atomistiques, permettant le dialogue avec les méthodes continues. De plus, une méthode d’application de chemins de déformation a été couplée avec la dynamique moléculaire, menant à la caractérisation de la réponse mécanique très anisotrope du monocristal de TATB. Nucléation de dislocations au cœur complexe, chemin de transition pour le maclage et pseudo-transition de phase de type maclage-flambage sont trois comportements distincts associés à trois types de sollicitation dans différentes directions. Des simulations à l’échelle mésoscopique, alimentées par les données calculées à l’échelle microscopique, sont ensuite effectuées et visent à reproduire la pseudo-transition de phase sous compression triaxiale dans un code Lagrangien. La comparaison des résultats aux deux échelles est rendue possible par les outils de mécanique des milieux continus implémentés dans le code de dynamique moléculaire. Finalement, un polycristal de TATB est simulé en élasticité non linéaire et nous montrons l’importance de considérer une équation d’état compatible avec cette pseudo-transition de phase, qui semble avoir une forte influence sur le comportement du polycristal.
7

Crystallographic analysis of twin variant selection and twin-twin junctions in commercially pure titanium / Analyse cristallographique de la sélection des variants de macles et des fonctions macles-macles dans un titane commercialement pur

Xu, Shun 28 August 2017 (has links)
Le titane et ses alliages sont très largement étudiés en raison de leur grande utilisation dans l'industrie chimique, les implants médicaux et les industries aérospatiales. Vu le rôle important dans la déformation plastique, le maclage a été largement étudié dans les métaux hexagonaux L'état de contrainte locale peut être modifié par maclage, ce qui influence les modes séquentiels de déformation tels que le glissement, le maclage et le maclage secondaire Ainsi, il existe une demande urgente pour comprendre le mécanisme associé à la déformation induite par maclage, utile pour le développement de modèles prédictifs qui peuvent décrire les événements ultérieurs induits par maclage, ainsi que leurs corrélations avec les microstructures. Dans ce travail, l'analyse cristallographique de la sélection de variantes de macles et des jonctions macle-macle (TTJ= twin-twin junction) est appliquée sur du titane commercialement pur. Un nouveau mécanisme de maclage séquentiel, où les macles {101̅2} sont stimulées par des jonctions macle {112̅1}-macle, est observée par EBSD quasi in situ. Un autre mécanisme de maclage séquentiel a été trouvé lorsque le maclage de compression {112̅2} contient une macle d'extension {101̅2} près des joints de grain à forte désorientation. L'accommodation est utilisée pour déterminer le variant de macle séquentiel lorsque le facteur de Schmid classique (SF) n'est pas suffisant. En outre, une analyse détaillée des 425 macles secondaires {101̅2} détectées dans les macles {11 2̅ 2} primaires révèle que les deux variants de macles qui présentent une désorientation spécifique par rapport aux grains parents sont les plus fréquentes. Il est possible de justifier la prévalence des macles secondaires avec un mécanisme de nucléation aidée par les dislocations prismatiques. Lorsqu'il est complété par une analyse SF généralisée, le critère peut prédire avec précision la sélection entre deux variants dans le groupe des macles secondaires les plus fréquentes. Lorsque plusieurs variants de macles sont actifs dans le même grain, des interactions macle-macle peuvent se produire. Les jonctions macle {112̅2}-macle peuvent être divisés en trois types selon la cristallographie des macles {112̅2}. Une analyse statistique de ces interfaces révèle qu'un seul type est le plus fréquent tandis que les autres types sont rarement activés. La fréquence des TTJ peut être évaluée en utilisant une analyse SF généralisée. Il en ressort que les interfaces macle-macle (TTB= twin-twin boundary) ne se forment que d’un côté de la macle. Concernant la formation de TTBs basée sur les interactions des dislocations de macle, les dislocations d'interface dans les TTBs observées ont une énergie de ligne inférieure à celles des TTB non observées. Une opération similaire est appliquée à l'analyse de {112̅1} TTJs / Titanium and its alloys have been extensively investigated due to their wide application in chemical industry, medical implants and aerospace industries. As a significant role in plastic deformation, twinning has been widely studied in hexagonal metals. The local stress state may be modified by twinning, which influences sequential plastic deformation modes such as slips, twinning and secondary twinning. Thus, there is also an urgent demand for understanding the mechanism associated with the twinning-induced deformation, which is useful for the development of predictive capabilities that can describe twinning and twinning-induced sequential events, and their correlations with microstructures. In this work, crystallographic analysis of twin variant selection and twin-twin junctions is applied in commercially pure titanium. A new sequential twinning mechanism that {101̅2} twins are stimulated by the {112̅1} twin-twin junctions (TTJs) is observed by quasi in-situ EBSD. Another sequential twinning mechanism that a {112̅2} compression twin adjoins a {10 1̅ 2} extension twin is found at high angle grain boundaries. Displacement gradient accommodation is used to determine the sequential twin variant while the classical Schmid factor (SF) is not sufficient. Besides, a detailed analysis of the detected 425 {101̅2} double twins inside primary {112̅2} twins reveals that the double twin variants that exhibit specific misorientation with respect to the parent grains are the most frequent. The prevalence of double twins is possible to justify with the prismatic-dislocation mediated nucleation mechanism. When complemented with an apparent SF analysis, the criterion can accurately predict the selection between two variants within the group of the popular double twins. When multiple twin variants are active in the same grain, twin-twin interactions may happen. {112̅2} TTJs can be divided into three types according to the crystallography of {112̅2} twins. A statistical analysis of {112̅2} TTJs reveals that one type is the most popular while other types are rarely activated. The frequency of TTJs can be evaluated by using an apparent SF analysis. The interesting finding is that twin-twin boundaries (TTBs) form in one side of the incoming twin as a TTJ forms. Corresponding to the formation of TTBs based on the interactions of twinning dislocations, interface dislocations in the observed TTBs have lower line energy than those in the un-observed TTBs. Similar operation is applied to the analysis of {112̅1} TTJs
8

Conception et développement de nouveaux alliages de titane à haute ductilité et fort écrouissage / Development and conception of new titanium alloys with high ductility and strong work hardening

Brozek, Cédrik 03 May 2017 (has links)
Les travaux effectués concernent le développement et la caractérisation de nouveaux alliages de titane à grande déformation, combinant des effets TRIP (« Transformation Induced Plasticity ») et TWIP (Twinning Induced Plasticity »). Ils s’inscrivent dans le cadre de la recherche de technologies plus économiques en termes de coûts énergétiques, nécessitant en particulier le développement de matériaux structuraux légers et performants avec une résistance, une ténacité et une ductilité exceptionnelles. Nous avons d’abord utilisé une approche semi-empirique, combinant calculs théoriques et données expérimentales, comme méthode de conception de ces nouveaux alliages. Basée sur des paramètres électroniques, cette approche permet de contrôler le degré de stabilité de la phase β du titane. Cette métallurgie, appelée métallurgie combinatoire, nous a permis de développer rapidement 3 nouvelles nuances d’alliages, qui sont : le Ti-8.5Cr-1.5Sn, Ti-8.5Cr-1.5Al, et le Ti-10V-4Cr-1Al. Il s’avère que plusieurs mécanismes de déformation sont déclenchés pour accommoder plastiquement le matériau, lors d’une sollicitation mécanique externe. Parmi ces mécanismes, sont présents le maclage {332}⟨113⟩, la martensite sous contrainte, et le glissement des dislocations. Nous avons montré que leur synergie donnée naissance à deux effets, un effet de raffinement microstructural dit « effet Hall & Petch dynamique », et un effet assimilable aux interactions matrice-renforts, appelé « effet Composite ». Nous avons mené ensuite une campagne d’essais balistiques comparative avec d’autres alliages de titane, pour analyser le comportement à l’endommagement, au plus proche d’une potentielle application industrielle. Nous avons montré que les alliages ayant la capacité d’être transformable par déformation sont ceux qui possèdent la ténacité (KIC) et la résilience (KCV) la plus élevée. Enfin, dans une dernière partie, axée sur l’ouverture de cette thématique, nous avons étudié dans un premier temps la transposition de la méthode de conception à un alliage industriel. Puis, dans un deuxième temps, une transposition des effets TRIP/TWIP à des matrices α+β, dont les résultats prometteurs des propriétés mécaniques offrent de nouvelles perspectives. / The work carried out concerns the development and characterization of new high deformation titanium alloys, combining TRIP (Transformation Induced Plasticity) and TWIP (Twinning Induced Plasticity) effects. They are part of the search for more economical technologies in terms of energy costs, requiring in particular the development of lightweight and efficient structural materials with exceptional strength, toughness and ductility. We first used a semi-empirical approach, combining theoretical calculations and experimental data, as a method for designing these new alloys. Based on electronic parameters, this approach makes it possible to control the degree of stability of the β phase of titanium. This metallurgy, called combinatorial metallurgy, allowed us to quickly develop 3 new grades of alloys, which are : Ti-8.5Cr-1.5Sn, Ti-8.5Cr-1.5Al, and Ti-10V-4Cr-1Al. It turns out that several deformation mechanisms are triggered to plastically accommodate the material during an external mechanical stress. Among these mechanisms are the {332}⟨113⟩ twinning, the stress martensite, and the dislocation slip. We have shown that their synergy gives rise to two effects, a microstructural refinement effect called "dynamic Hall & Petch effect", and an effect comparable to the matrix-reinforcement interactions, called the "Composite effect". We then carried out a comparative ballistic test campaign with other titanium alloys, to analyze the behavior to damage, closest to a potential industrial application. We have shown that alloys with the ability to be transformable by deformation are those with the highest toughness (KIC) and resilience (KCV). Finally, in a final part, focusing on the opening of this thematic, we first studied the transposition of the design method to an industrial alloy. Then, a transposition of the TRIP / TWIP effects to α+β matrices, whose promising results of mechanical properties offer new perspectives.Keywords : Titanium alloys, Twinning, Strain-hardening, Deformation microstructure, Martensitic phase transformation.
9

Etude du comportement mécanique et des évolutions microstructurales de l'acier austénitique Fe-22Mn-0.6C à effet TWIP sous sollicitations complexes : approche expérimentale et modélisation / Study of the mechanical behavior and microstructural evolutions of the austenitic Fe-22Mn-0.6C TWIP steel during complex mechanical loadings : experimental approach and modeling

Barbier, David 06 March 2009 (has links)
Les très bonnes propriétés mécaniques de l'acier TWIP (TWinning Induced Plasticity) Fe-22Mn-0.6C résultent de l'activation du glissement des dislocations et du maclage mécanique. L'augmentation de la fraction de macles avec la déformation conduit à la réduction du libre parcours moyen des dislocations (effet Hall-Petch dynamique). L'objectif de ce travail était de fournir une analyse et une compréhension plus approfondies du comportement mécanique de cet acier pour différents modes de sollicitation. Nous avons étudié le comportement mécanique lors de différents trajets de déformation (traction, cisaillement simple et réversible, changements de trajets) et plus particulièrement l'évolution de l'écrouissage en relation avec les évolutions microstructurales analysées par diffraction de rayons X, MEB FEG EBSD et MET. En combinant les données obtenues par EBSD et par DRX, nous proposons une approche qui permet d’évaluer la fraction de macles. Le croisement des observations mécaniques et microstructurales nous a permis de montrer que les différents stades d’écrouissage sont liés à des caractéristiques particulières de la microstructure et de la texture, l'interaction entre macles et dislocations conduisant à une augmentation de l'écrouissage. Le maintien de l'écrouissage à un niveau élevé est favorisé par l'activation de deux systèmes de maclage et par l'évolution de texture permettant ce mode de déformation au sein du polycristal. Nous avons observé que la manifestation des différents stades d’écrouissage et de l'effet TWIP varie suivant le type de sollicitation. Les essais en cisaillement réversible ont mis en évidence un effet Bauschinger très prononcé relié à l’effet Hall-Petch dynamique. L'empilement des dislocations aux joints de grains et de macles crée des champs de contraintes locaux qui influencent le comportement au trajet retour. Ces résultats expérimentaux nous ont permis de tester les capacités prédictives d'un modèle micromécanique élasto-viscoplastique à transition d'échelles incorporant l'effet TWIP. Les simulations des trajets monotones de déformation sont en bon accord avec les résultats expérimentaux. Pour améliorer les prévisions des essais de cisaillement réversible et de changement de trajet, des perfectionnements sont proposés / The TWIP steel (Twinning Induced Plasticity) Fe-22Mn-0.6C exhibits outstanding mechanical properties combining a good ductility and a high mechanical resistance thanks to the activation of dislocation glide and mechanical twinning. As the volume fraction of twins increases with the deformation, the mean free path of the dislocations is reduced (dynamical Hall-Petch effect). The goal of this study was to supply a much more precise analysis and understanding of the mechanical behavior of this TWIP steel during different mechanical loadings. We studied the mechanical behavior during different mechanical loadings (tension, simple and reverse shear, strain path changes), and more precisely the strain hardening evolution in relation to the microstructure and texture evolutions analyzed by X-ray diffraction, FEG SEM EBSD and TEM. By combining data obtained by EBSD and X-rays diffraction, we propose an approach that allows us to evaluate the twin volume fraction. The examination of the mechanical and microstructural observations allowed us to show that the different stages of hardening are linked to particular characteristics of the microstructure and texture, the interaction between dislocations and twins leading to an increase of the hardening. The hardening is maintained at a high level by the activation of two twin systems and by the texture evolution. The latter sustains this mode of deformation in the polycrystal. We also observed that the occurrence of the different stages of hardening and of the effect TWIP varies according to the type of solicitation imposed. The analysis of the mechanical behavior during reverse shear tests showed that the steel exhibits a strong Bauschinger effect related to the dynamic Hall-Petch effect. The dislocation piles-up at grain and twin boundaries create local stress fields that influence the mechanical behavior during the reverse deformation. Finally, these experimental results allowed us to check the predictive capacities (mechanical behavior, twin kinetics, texture) of an elasto-viscoplastic micromechanical model incorporating the TWIP effect. The simulations of monotonous deformation are in good agreement with experimental results. To improve prediction of the reverse shear tests and strain path changes, additional developments are suggested
10

Les mécanismes de déformation d'un acier TWIP FeMnC : une étude par diffraction des rayons X

Collet, Jean-Louis 09 March 2009 (has links) (PDF)
Les mécanismes de déformation des aciers TWIP austénitiques Fe22Mn0.6C ont été étudiés par une analyse quantitative des profils des pics de diffraction aux rayons X. Les densités de dislocations et les probabilités de fautes d'empilement ont été déterminées en utilisant respectivement le modèle de Wilkens et la théorie de Warren. Cette approche de l'analyse des profils de raie a été modifiée pour prendre en compte l'effet des empilements de dislocations provoqués par le glissement planaire de celles-ci dans les métaux CFC à faible énergie de faute d'empilement. L'analyse quantitative du champ de contrainte moyen en tête des empilements de dislocations montre que celui-ci est égal au back-stress dans ces matériaux, ce qui nous a permis une mesure non destructive de celui-ci. <br />Les résultats de cette méthode ont été confirmés à l'aide de l'indexation automatique de clichés de diffraction en microscopie électronique et de densités de dislocations mesurées par variation de la masse volumique issues de la littérature. Cette méthode a également été appliquée avec succès sur un échantillon standard, en l'occurrence un monocristal de cuivre.<br />Nous avons confirmé que les mécanismes de déformation des aciers Fe22Mn0.6C, basés principalement sur la formation de martensite à très basse température, laissent place à un maclage intense à température ambiante puis au seul glissement des dislocations à haute température. L'analyse quantitative que nous avons développée a été également appliquée à des aciers TWIP Fe22Mn0.6C restaurés. La comparaison des mesures de densités de dislocations et du back-stress avec l'évolution de la contrainte d'écoulement durant le traitement thermique démontre clairement que le durcissement induit par le maclage n'est pas identifiable au back-stress.

Page generated in 0.4467 seconds