Spelling suggestions: "subject:"macro fiber composites"" "subject:"macro fiber komposites""
1 |
Flexible piezoelectric composites and concepts for bio-inspired dynamic bending-twisting actuationSamur, Algan 10 April 2013 (has links)
No description available.
|
2 |
Dual Mode Macro Fiber Composite-Actuated Morphing Tip Feathers for Controlling Small Unmanned AircraftRubenking, Samuel Kim 25 July 2017 (has links)
The transition of flight from manned to unmanned systems has led to new research and applications of technology within the field that, until recently, were previously thought to be unfeasible. The industry has become interested in alternative control surfaces and uses for smart materials. A Macro Fiber Composite (MFC), a smart material, takes advantage of the piezoelectric effect and provides an attractive alternative actuator to servos in the Small Unmanned Aerial Systems (SUAS) regime of flight. This research looks to take MFC actuated control surfaces one step further by pulling inspiration from and avian flight. A dual mode control surface, created by applying two sets of two MFCs to patch of carbon fiber, can mimic the tip feathers of a bird. This actuator was modeled both using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Real-world static testing on a feather confirmed preliminary FEA results, and wind tunnel tests simulating assumed cruise conditions confirmed the feather would not exhibit any adverse structural behaviors, such as flutter or aeroelastic divergence. From its modeled performance on a wing using CFD, the MFC feather proved to be a success. It was able to produce a wing that, when compared to a traditional rectangular wing, yielded 73% less induced drag and generated proverse yaw. However, the MFC feathers alone, in the configuration tested, did not produce enough roll authority to feasibly control an aircraft. / Master of Science / The transition of flight from manned to unmanned systems has led to new research and applications of technology within the field that, until recently, were previously thought to be unfeasible. The industry has become interested in alternative control surfaces and uses for smart materials. A Macro Fiber Composite (MFC), a smart material, takes advantage of a specific material property and provides an attractive alternative actuator to servos in the Small Unmanned Aerial Systems (SUAS) regime of flight. This research looks to take MFC actuated control surfaces one step further by pulling inspiration from and avian flight. A dual mode control surface, created by applying two sets of two MFCs to patch of carbon fiber, can mimic the tip feathers of a bird. This actuator was modeled both using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). Real-world static testing on a feather confirmed preliminary FEA results, and wind tunnel tests simulating assumed cruise conditions confirmed the feather would not exhibit any adverse structural behaviors, such as flutter or aeroelastic divergence. From its modeled performance on a wing using CFD, the MFC feather proved to be a success. It was able to produce a wing that, when compared to a traditional rectangular wing, yielded 73% less induced drag and generated proverse yaw. However, the MFC feathers alone, in the configuration tested, did not produce enough roll authority to feasibly control an aircraft.
|
3 |
The role of flexibility on propulsive performance of flapping finsKancharala, Ashok Kumar 02 September 2015 (has links)
The versatility of the fish to adapt to diverse swimming requirements has attracted the attention of researchers in studying bioinspired propulsion for developing efficient underwater robotics. The tail/caudal fin is a major source of thrust generation and is believed that the fish modulates its fin stiffness to optimize the propulsive performance. Inspired by the stiffness modulation of fish fins, the objective of this research is to predict and evaluate the effect of flexibility on propulsive performance of flapping fins. The stiffness of the fins vary along their length and optimization studies have been performed to predict the stiffness profiles that maximize performance. Experiments performed on the real fish caudal fins to measure the stiffness variation along their length validate the theoretical optimal stiffness profiles and provide an insight about the evolution of fish fins for optimal performance. Along with the fin stiffness, the stiffness of the joint (caudal peduncle) connecting the fish body to the tail plays a major role in the generation of thrust. The numerical and experimental investigation has shown that there exists an optimal combination of fin and joint stiffness for each operating condition, thus providing the motivation for active stiffness control during locomotion to optimize efficiency.
Inspired by nature's ability to modulate stiffness and shape for different operating conditions, an investigation has been carried out on active control of flapping foils for thrust tailoring using Macro Fiber Composites (MFCs). It has been observed that the performance can be enhanced by controlling the deformation, and distributed actuation along fin produces maximum performance through proper selection of the phase difference between heaving and voltage. Flapping fins produce forces which are oscillatory in nature causing center of mass (COM) oscillations of the attached bodies posing problems of control and maneuverability. Optimization studies have revealed that flexibility of the fin plays a major role in reducing the COM oscillations along with the other operating parameters. Based on these studies, the design principles and guidelines that control the performance have been proposed which aid in the development of aerial and underwater robotic vehicles. Additionally, these studies provide some insight in to how fish might modulate its stiffness based on the requirements. / Ph. D.
|
Page generated in 0.0648 seconds