• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés des magnétotransport de (Ge,Mn) semiconducteur ferromagnétique sur GaAs(001) pour lélectronique de spin

Yu, Ing-Song 31 July 2010 (has links) (PDF)
En utilisant l'épitaxie par jets moléculaires à basse température, nous avons élaboré des couches de (Ge,Mn), contenant des nanostructures ferromagnétiques, sur deux types de substrats GaAs d'orientation (001) : des substrats GaAs « epiready » (échantillons « Ga-GeMn »), et des substrats encapsulés par de l'arsenic amorphe (échantillons « As-GeMn »). Dans les échantillons Ga-GeMn, nous obtenons la formation de nanocolonnes riches en Mn ; celles-ci sont parallèles entre elles, ou enchevêtrées, suivant la morphologie de surface initiale. Les mesures de magnétométrie révèlent deux phases magnétiques : les nanocolonnes ferromagnétiques avec une température de Curie de 150 K, et la matrice de germanium, rendue paramagnétique par la présence de Mn dilué. Les mesures de magnétotransport montrent que ces couches sont de type p, et révèlent un l'effet Hall anormal (AHE) et plusieurs contributions à la magnétorésistance : une magnétorésistance géante négative, à basse température, la magnétorésistante orbitale, parabolique, et une contribution supplémentaire à faible champ. Un calcul des propriétés de magnétotransport a été commencé en s'appuyant sur des hypothèses de la structure de bande entre les inclusions riches en Mn et la matrice semiconductrice de type p : celui-ci montre que la présence d'AHE dans les inclusions donne naissance à un AHE sur tout l'échantillon, mais aussi à un mécanisme de magnétorésistance qui rend compte de cette contribution (que nous appelons magnétorésistance Hall). Dans les échantillons As-GeMn, la diffusion de l'arsenic change le mode de croissance, avec une décomposition spinodale qui perd son caractère bidimensionnel pour devenir tridimensionnelle, avec la formation d'agrégats riches en Mn (température de Curie de l'ordre de 50 K) et d'agrégats de la phase ferromagnétique connue Ge3Mn5. La compensation entre Mn (accepteur) et As (donneur) gouverne les propriétés de transport. Dans les couches de type n, une forte anisotropie de la magnétorésistance est observée, dont nous montrons qu'elle est due à des effets de localisation faible. Une autre contribution à la magnétorésistance est observée, que nous suggérons d'attribuer à une magnétorésistance tunnel à travers la jonction Schottky qui se forme à l'interface entre les inclusions riches en Mn, qui sont métalliques, et le semiconducteur Ge de type n.
2

Microscopie à émission d'électrons balistiques : du magnétotransport d'électrons chauds à l'imagerie magnétique

Hervé, Marie 12 July 2013 (has links) (PDF)
Au cours de ces travaux de thèse, nous avons étudié par microscopie magnétique à émission d'électrons balistiques (BEMM) les propriétés de magnétotransport d'électrons chauds de la vanne de spin Fe/Au/Fe épitaxiée sur GaAs(001). Dans ces expériences, la pointe d'un microscope à effet tunnel (STM) injecte localement un courant d'électrons chauds à la surface de la vanne de spin. La mesure sous champ magnétique du courant d'électrons balistiques collecté à l'arrière de l'échantillon donne accès aux propriétés locales de magnétoconductance de l'échantillon. Nous avons dans un premier temps étudié les propriétés de magnétotransport de vannes de spin planaires. Les mesures BEMM démontrent un magnétocourant d'électrons chauds pouvant atteindre 500 % à température ambiante. Ces forts effets de magnétoconductance ne sont que très faiblement dépendants des épaisseurs des électrodes de fer et ne peuvent donc être dus à l'asymétrie en spin de la longueur d'atténuation des électrons chauds dans les couches de fer. Dans cette structure épitaxiée, la polarisation en spin du faisceau d'électrons chauds s'acquiert principalement aux interfaces via des effets de structure électronique. L'électron traversant les couches minces métalliques se propage comme un état de Bloch. Sa transmission aux différentes interfaces se fait en conservant d'une part la composante transverse k║ du vecteur d'onde électronique, et d'autre part, la symétrie de la fonction d'onde. Au-dessus de la barrière Schottky, les électrons chauds sont collectés dans la vallée Г du GaAs se projetant à l'interface dans la direction k║=0. Dans cette direction k║=0, la conservation de la symétrie de la fonction d'onde à l'interface Fe/Au conduit au filtrage des états de Bloch de symétrie Δ1 du fer. Ces états de symétrie Δ1, totalement polarisés en spin, sont responsables des forts magnétocourants d'électrons chauds observés. Cette analyse est confirmée expérimentalement par l'observation d'une corrélation entre amplitude du magnétocourant et masse effective du substrat semiconducteur. En augmentant la masse effective du semiconducteur, on ouvre le collimateur filtrant le courant d'électrons chauds autour de la direction k║=0, et le magnétocourant diminue sans modifier la vanne de spin. Dans un second temps, tirant partie de la résolution latérale du microscope et de sa sensibilité au magnétisme, des microstructures de fer préparées sous ultra-vide par évaporation à travers un masque (méthode du nanostencil) ont été étudiées. Dans ces structures, la modulation du courant collecté par la structure locale en domaines magnétiques a permis la réalisation d'images magnétiques avec une haute résolution spatiale. Les contrastes observés sur ces microstructures sont en excellent accord avec les images BEMM calculées à partir de simulations micromagnétiques ouvrant la voie à une microscopie magnétique quantitative à forte sensibilité et résolution latérale nanométrique.
3

Mise au point d’un laboratoire sur puce pour la détection de cellules eucaryotes par des capteurs à magnétorésistance géante / Development of a lab on a chip for the detection of eukaryotic cells by giant magnetoresistance sensors

Giraud, Manon 21 November 2019 (has links)
Les tests « in vitro » permettent d’établir près de 70% des diagnostics et leur développement pour une utilisation au plus près du patient apparaît donc comme un enjeu majeur de santé publique. Dans ce contexte, les critères ASSURED (« Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users ») a été défini par l’organisation mondiale de la santé pour que les chercheurs développent des outils de diagnostic dits « Point of Care » utilisables par le plus grand nombre. Avec l’essor de la microfluidique, la gamme des dispositifs possibles s'est élargie et des biocapteurs intégrés ont été développés, transformant le signal biologique d’une reconnaissance d’un biomarqueur par une sonde biologique en un signal optique, électrochimique, mécanique ou encore magnétique. Comme les milieux biologiques sont en grande majorité amagnétiques, les capteurs magnétiques ne sont pas affectés par l’utilisation de matrices biologiques complexes comme peuvent l’être les mesures optiques ou électrochimiques. De plus ces capteurs sont faciles à produire et intégrables dans les puces microfluidiques. Cette thèse a pour objectifs de concevoir un outil de diagnostic in vitro basé sur des capteurs à magnétorésistance géante et de tester ses performances. Cette étude a été réalisée en utilisant une lignée cellulaire de myélome murin. Les cellules sont marquées spécifiquement par des particules magnétiques fonctionnalisées par des anticorps dirigés contre un de leurs antigènes et sont passées dans le canal microfluidique au-dessus des capteurs. Cette méthode de détection dynamique permet de compter les objets magnétiques un par un. La difficulté réside dans la distinction des signaux spécifiques provenant des cellules marquées des signaux faux positifs induits par les billes restant en solution. Deux types de dispositifs ont été conçus dans cette thèse pour lever ce verrou. Le premier possède une couche inerte de séparation de quelques micromètres entre les capteurs GMR et le canal qui permet de supprimer les signaux des billes isolées. Le second dispositif, qui a des capteurs à la fois au-dessus et au-dessous du canal microfluidique, permet une double détection simultanée de chaque objet magnétique. Il est ainsi possible de connaître le nombre de billes qui les marquent et de déterminer s’il s’agit d’un agrégat de billes ou d’un objet biologique. / The « in vitro » tests are requested for the establishment of nearly 70% of diagnoses and their development for on-site detection therefore appears to be a major public health issue. In this context, the ASSURED criterion (« Affordable, Sensitive, Specific, User-friendly, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users ») has been defined by the World Health Organization to encourage researchers to develop diagnostic tools called « Point of Care » that can be widely used.With the rise of microfluidics, the range of possible devices has broadened and integrated biosensors have been developed, transforming the biological signal from a biomarker recognition by a biological probe into an optical, electrochemical, mechanical or magnetic signal. As biological environments are largely non-magnetic, magnetic sensors are not affected by the use of complex biological matrices as are optical or electrochemical measurements. In addition, these sensors are easy to produce and can be integrated into microfluidic chips. The objectives of this thesis are to design a diagnostic tool in vitro based on giant magnetoresistance sensors and to test its performance. Its development was carried out using a murine myeloma cell line. The cells are specifically labeled by magnetic particles functionalized by antibodies directed against one of their antigens and flown in the microfluidic channel above the sensors. This dynamic detection method allows magnetic objects to be counted one by one. The challenge is to distinguish the signals coming from the labeled cells from those of the beads remaining in solution. In order to address this problem, two labs on chips are developed in this thesis. In a first device, an inner layer of a few micrometers separates the sensors from the channel which allows to suppress the signals of the isolated beads. The second device has sensors both above and below the microfluidic channel and can measure the number of beads corresponding to each doubly detected object which can thus be identified (aggregates or biological objects).
4

Microscopie à émission d’électrons balistiques : du magnétotransport d’électrons chauds à l’imagerie magnétique / Ballistic electron emission microscopy : from hot electron magnetotransport to magnetic imaging

Hervé, Marie 12 July 2013 (has links)
Au cours de ces travaux de thèse, nous avons étudié par microscopie magnétique à émission d’électrons balistiques (BEMM) les propriétés de magnétotransport d’électrons chauds de la vanne de spin Fe/Au/Fe épitaxiée sur GaAs(001). Dans ces expériences, la pointe d’un microscope à effet tunnel (STM) injecte localement un courant d’électrons chauds à la surface de la vanne de spin. La mesure sous champ magnétique du courant d’électrons balistiques collecté à l’arrière de l’échantillon donne accès aux propriétés locales de magnétoconductance de l’échantillon. Nous avons dans un premier temps étudié les propriétés de magnétotransport de vannes de spin planaires. Les mesures BEMM démontrent un magnétocourant d’électrons chauds pouvant atteindre 500 % à température ambiante. Ces forts effets de magnétoconductance ne sont que très faiblement dépendants des épaisseurs des électrodes de fer et ne peuvent donc être dus à l’asymétrie en spin de la longueur d’atténuation des électrons chauds dans les couches de fer. Dans cette structure épitaxiée, la polarisation en spin du faisceau d’électrons chauds s’acquiert principalement aux interfaces via des effets de structure électronique. L’électron traversant les couches minces métalliques se propage comme un état de Bloch. Sa transmission aux différentes interfaces se fait en conservant d’une part la composante transverse k║ du vecteur d’onde électronique, et d’autre part, la symétrie de la fonction d’onde. Au-dessus de la barrière Schottky, les électrons chauds sont collectés dans la vallée Г du GaAs se projetant à l’interface dans la direction k║=0. Dans cette direction k║=0, la conservation de la symétrie de la fonction d’onde à l’interface Fe/Au conduit au filtrage des états de Bloch de symétrie Δ1 du fer. Ces états de symétrie Δ1, totalement polarisés en spin, sont responsables des forts magnétocourants d’électrons chauds observés. Cette analyse est confirmée expérimentalement par l’observation d’une corrélation entre amplitude du magnétocourant et masse effective du substrat semiconducteur. En augmentant la masse effective du semiconducteur, on ouvre le collimateur filtrant le courant d’électrons chauds autour de la direction k║=0, et le magnétocourant diminue sans modifier la vanne de spin. Dans un second temps, tirant partie de la résolution latérale du microscope et de sa sensibilité au magnétisme, des microstructures de fer préparées sous ultra-vide par évaporation à travers un masque (méthode du nanostencil) ont été étudiées. Dans ces structures, la modulation du courant collecté par la structure locale en domaines magnétiques a permis la réalisation d’images magnétiques avec une haute résolution spatiale. Les contrastes observés sur ces microstructures sont en excellent accord avec les images BEMM calculées à partir de simulations micromagnétiques ouvrant la voie à une microscopie magnétique quantitative à forte sensibilité et résolution latérale nanométrique. / During this thesis work, we studied by ballistic electron magnetic microscopy (BEMM) the hot electron magnetotransport properties of epitaxial Fe/Au/Fe/GaAs(001) heterostructures. In these experiments, hot electrons are injected from an STM tip through the metallic base. The measurement of the ballistic electron current collected at the back of the substrate under magnetic field gives access to the local magnetoconductance properties of the sample. The first part of this work consists in the study of a planar heterostructures. BEMM measurements on epitaxial Fe/Au/Fe/GaAs(001) samples demonstrate hot electron magnetocurrent as high as 500% at room temperature. This high magnetocurrent value is observed to be almost independent of the Fe layers thickness, and thus can not be explained by the spin asymmetry of the electron attenuation length in the iron layers. In this epitaxial heterostructure, the hot electron beam is mainly spin-polarized at the interfaces due to band structure effects. In the metallic thin films, electrons propagate as Bloch states. The electron wave function transmission at the interfaces should satisfy two selection rules: the transverse momentum (k║) of the electron wave vector and the symmetry of the electron wave function should be conserved. Above the Schottky barrier height, hot-electrons are collected in the Г valley of GaAs selecting thus only electrons with a transverse momentum (k║) close to zero. Among these k|| ≈ 0 states, conservation of the electron wave-function symmetry at the Fe/Au epitaxial interfaces additionally selects electrons with the Δ1 symmetry. These Δ1 states are fully spin-polarized and are responsible for the observed high magnetocurrent in these heterostructures. This analysis is experimentally confirmed by the observation of a correlation between the magnetocurrent value and the semiconductor effective mass. By increasing the semiconductor effective mass, we open the collimator which filters the electronic states around k║=0 and the magnetocurrent value decreases. To take advantage of the lateral resolution of the microscope and of its high sensitivity to magnetism, the second part of this work was devoted to the study of sub-micrometric iron structures prepared under UHV by evaporation through a nanostencil. In these structures, the modulation of the collected current by the local magnetic domain structure in the Fe dots allows magnetic imaging with a high spatial resolution. The experimental magnetocontrasts observed on these sub-micrometric Fe dots are in excellent agreement with BEMM current maps calculated from micromagnetic simulation results. This opens the way to a quantitative magnetic microscopy with high contrast and nanometric lateral resolution.
5

Very low field magnetic resonance imaging / IRM à très bas champ magnétique

Herreros, Quentin 21 November 2013 (has links)
L’enjeu principal de cette thèse a été de démontrer la faisabilité de l’Imagerie par Résonance Magnétique à très bas champ (entre 1 mT et 10 mT). Pour ce faire, un nouveau type de capteur, appelé “capteur mixte”, a été utilisé. Ce détecteur est le résultat de l’association d’une magnétorésistance géante avec une boucle supraconductrice. Il génère un bruit en champ comparable aux détecteurs les plus utilisés dans cette gamme de fréquence (Bobine accordées, SQUIDs, Magnétomètres atomique optique). Le couplage entre l’échantillon observé et le capteur mixte a été grandement amélioré à travers l’utilisation d’un transformateur de flux. Cet intermédiaire a été conçu et optimisé pour maximiser la sensibilité en champ du “capteur mixte”. Cet ensemble a ensuite été introduit dans un IRM à très bas champ magnétique pour tester son efficacité in-situ. Parallèlement, différentes séquences d’IRM (GE, SE, FLASH, EPI,...) ont été développées spécifiquement pour le très bas champ. Elles ont été utilisées pour réaliser de l’imagerie tridimensionnelle in-vivo ainsi que des études relaxométriques sur divers produits. Enfin, un système d’IRM “tête entière” a été construit pour permettre l’acquisition d’images à très bas champ magnétique sur un large volume. / The aim of this thesis is to perform Magnetic Resonance Imaging at very low field (from 1 mT to 10 mT). A new kind of sensor called “mixed sensor” has been used to achieve a good detectivity at low frequencies. Combining a superconducting loop and a giant magnetoresistance, those detectors have a competitive equivalent field noise compared to existing devices (Tuned coils, SQUIDs and Atomic Magnetometers). They have been combined with flux transformers to increase the coupling between the sample and the sensor. A complete study has been performed to adapt it to mixed sensors and then maximize the gain. This set has been incorporated in an existing small MRI device to test its robustness in real conditions. In parallel, several MRI sequences (GE, SE, FLASH, EPI, ...) have been integrated and adapted to very low field requirements. They have been used to perform in-vivo three dimensional imaging and relaxometry studies on well known products to test their reliability. Finally, a larger setup adapted for full-head imaging has been designed and built to perform images on a larger working volume.
6

Microstructure à fine échelle d'alliages à propriétés de magnétorésistance géante: relation avec les propriétés magnétiques. Cas de rubans de Cu80FexNi20-x (x=5,10,15 at%)

Cazottes, Sophie 25 September 2008 (has links) (PDF)
Un matériau magnétorésistif voit sa résistance électrique varier lorsqu'un champ magnétique lui est appliqué. Le but de cette étude est de relier les différents paramètres structuraux aux propriétés magnétiques et de magnétorésistance de systèmes granulaires de Cu80FexNi20-x (at%) élaborés sous forme de rubans. L'influence de la composition de l'alliage est d'abord présenté. Puis, la microstructure d'un ruban de Cu80Fe10Ni10(at%), présentant le maximum de magnétorésistance, a été précisément caractérisée de l'échelle microscopique à l'échelle atomique. Cet échantillon est constitué de précipités fcc riches en fer et en nickel cohérents avec la matrice riche en cuivre. L'étude des propriétés magnétiques de ce ruban a permis de montrer que des interactions magnétiques sont présentes qui diminuent la MRG. Les paramètres structuraux (distributions de taille et de composition, fraction volumique et densité de précipités, largeur des interfaces...) ont été corrélés aux propriétés magnétiques.
7

Microscopie à émission d'électrons balistiques : du magnétotransport d'électrons chauds à l'imagerie magnétique

Hervé, Marie 12 July 2013 (has links) (PDF)
Au cours de ces travaux de thèse, nous avons étudié par microscopie magnétique à émission d'électrons balistiques (BEMM) les propriétés de magnétotransport d'électrons chauds de la vanne de spin Fe/Au/Fe épitaxiée sur GaAs(001). Dans ces expériences, la pointe d'un microscope à effet tunnel (STM) injecte localement un courant d'électrons chauds à la surface de la vanne de spin. La mesure sous champ magnétique du courant d'électrons balistiques collecté à l'arrière de l'échantillon donne accès aux propriétés locales de magnétoconductance de l'échantillon. Nous avons dans un premier temps étudié les propriétés de magnétotransport de vannes de spin planaires. Les mesures BEMM démontrent un magnétocourant d'électrons chauds pouvant atteindre 500 % à température ambiante. Ces forts effets de magnétoconductance ne sont que très faiblement dépendants des épaisseurs des électrodes de fer et ne peuvent donc être dus à l'asymétrie en spin de la longueur d'atténuation des électrons chauds dans les couches de fer. Dans cette structure épitaxiée, la polarisation en spin du faisceau d'électrons chauds s'acquiert principalement aux interfaces via des effets de structure électronique. L'électron traversant les couches minces métalliques se propage comme un état de Bloch. Sa transmission aux différentes interfaces se fait en conservant d'une part la composante transverse k║ du vecteur d'onde électronique, et d'autre part, la symétrie de la fonction d'onde. Au-dessus de la barrière Schottky, les électrons chauds sont collectés dans la vallée Г du GaAs se projetant à l'interface dans la direction k║=0. Dans cette direction k║=0, la conservation de la symétrie de la fonction d'onde à l'interface Fe/Au conduit au filtrage des états de Bloch de symétrie Δ1 du fer. Ces états de symétrie Δ1, totalement polarisés en spin, sont responsables des forts magnétocourants d'électrons chauds observés. Cette analyse est confirmée expérimentalement par l'observation d'une corrélation entre amplitude du magnétocourant et masse effective du substrat semiconducteur. En augmentant la masse effective du semiconducteur, on ouvre le collimateur filtrant le courant d'électrons chauds autour de la direction k║=0, et le magnétocourant diminue sans modifier la vanne de spin. Dans un second temps, tirant partie de la résolution latérale du microscope et de sa sensibilité au magnétisme, des microstructures de fer préparées sous ultra-vide par évaporation à travers un masque (méthode du nanostencil) ont été étudiées. Dans ces structures, la modulation du courant collecté par la structure locale en domaines magnétiques a permis la réalisation d'images magnétiques avec une haute résolution spatiale. Les contrastes observés sur ces microstructures sont en excellent accord avec les images BEMM calculées à partir de simulations micromagnétiques ouvrant la voie à une microscopie magnétique quantitative à forte sensibilité et résolution latérale nanométrique.
8

Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : De l'expérience au modèle d'interaction

Zorni, Chiara 28 February 2012 (has links) (PDF)
La problématique étudiée est le contrôle non destructif par courants de Foucault de matériaux ferromagnétiques à l'aide d'un capteur à magnétorésistance géante (GMR). Durant ces travaux deux aspects complémentaires ont été abordés : l'un concerne la mesure expérimentale pour essayer de quantifier et de s'affranchir du bruit de structure et du champ magnétique rémanent, l'autre le développement d'un modèle numérique d'interaction. En ce qui concerne la partie expérimentale plusieurs études avec un capteur GMR qui présente un intérêt particulier en raison de sa bonne sensibilité à basses fréquences, de sa dynamique et de la relative simplicité de mise en œuvre ont été conduites et ont permis d'identifier et quantifier les phénomènes d'artefacts spécifiques aux matériaux ferromagnétiques : le bruit de structure et le champ magnétique rémanent. Une solution basée sur une combinaison linéaire des données expérimentales obtenues à plusieurs fréquences est appliquée pour atténuer le bruit dû à la structure du matériau. Le champ magnétique rémanent a été analysé expérimentalement et un circuit d'asservissement permettant de fixer un point de polarisation dans la zone de fonctionnement linéaire de la GMR et ainsi d'atténuer les perturbations dues aux champs magnétiques rémanents est mis en place. En parallèle et dans l'optique de développer des outils de simulation permettant de mieux comprendre les phénomènes physiques et ainsi d'optimiser les procédés de contrôle, un modèle numérique d'interaction simulant le cas du contrôle d'une pièce plane ferromagnétique d'une ou plusieurs couches pouvant contenir un ou plusieurs défauts est développé. Il étend un modèle déjà existant dans un cas non-ferromagnétique déjà intégré dans la plateforme de simulation CIVA développé par le CEA-LIST et permettant la simulation du Contrôle Non Destructif par Courants de Foucault. Il est basé sur une méthode d'intégrales de volume (VIM) et l'utilisation des tenseurs ou dyades de Green. La solution est obtenue après la discrétisation du volume de calcul et l'application d'une variante de Galerkin de la Méthode des Moments (MoM). La réponse de la sonde est ensuite calculée en appliquant le théorème de réciprocité de Lorentz. Des collaborations avec deux laboratoires universitaires (le Laboratoire de Génie Électrique de Paris (LGEP) et l'Université de Cassino (Italie)) ont permis de comparer les résultats issus des trois différents modèles sur un cas de la littérature. Les résultats se sont révélés satisfaisants et plusieurs études de convergence ont permis d'analyser la stabilité du modèle.
9

Contrôle non destructif par courants de Foucault de milieux ferromagnétiques : de l’expérience au modèle d’interaction / Eddy current non destructive testing of ferromagnetic materials : experimentation and modeling

Zorni, Chiara 28 February 2012 (has links)
La problématique étudiée est le contrôle non destructif par courants de Foucault de matériaux ferromagnétiques à l’aide d’un capteur à magnétorésistance géante (GMR). Durant ces travaux deux aspects complémentaires ont été abordés : l’un concerne la mesure expérimentale pour essayer de quantifier et de s’affranchir du bruit de structure et du champ magnétique rémanent, l’autre le développement d’un modèle numérique d’interaction. En ce qui concerne la partie expérimentale plusieurs études avec un capteur GMR qui présente un intérêt particulier en raison de sa bonne sensibilité à basses fréquences, de sa dynamique et de la relative simplicité de mise en œuvre ont été conduites et ont permis d’identifier et quantifier les phénomènes d’artefacts spécifiques aux matériaux ferromagnétiques : le bruit de structure et le champ magnétique rémanent. Une solution basée sur une combinaison linéaire des données expérimentales obtenues à plusieurs fréquences est appliquée pour atténuer le bruit dû à la structure du matériau. Le champ magnétique rémanent a été analysé expérimentalement et un circuit d’asservissement permettant de fixer un point de polarisation dans la zone de fonctionnement linéaire de la GMR et ainsi d’atténuer les perturbations dues aux champs magnétiques rémanents est mis en place. En parallèle et dans l’optique de développer des outils de simulation permettant de mieux comprendre les phénomènes physiques et ainsi d’optimiser les procédés de contrôle, un modèle numérique d’interaction simulant le cas du contrôle d’une pièce plane ferromagnétique d’une ou plusieurs couches pouvant contenir un ou plusieurs défauts est développé. Il étend un modèle déjà existant dans un cas non-ferromagnétique déjà intégré dans la plateforme de simulation CIVA développé par le CEA-LIST et permettant la simulation du Contrôle Non Destructif par Courants de Foucault. Il est basé sur une méthode d’intégrales de volume (VIM) et l’utilisation des tenseurs ou dyades de Green. La solution est obtenue après la discrétisation du volume de calcul et l’application d’une variante de Galerkin de la Méthode des Moments (MoM). La réponse de la sonde est ensuite calculée en appliquant le théorème de réciprocité de Lorentz. Des collaborations avec deux laboratoires universitaires (le Laboratoire de Génie Électrique de Paris (LGEP) et l’Université de Cassino (Italie)) ont permis de comparer les résultats issus des trois différents modèles sur un cas de la littérature. Les résultats se sont révélés satisfaisants et plusieurs études de convergence ont permis d’analyser la stabilité du modèle. / The aim of this work is the eddy-current testing (ECT) of ferromagnetic materials within magnetic sensors, such as Giant Magneto-Resistances (GMR). Two complementary aspects have been studied. Experimental measurements have been carried out in order to quantify and minimize the noise coming from the materials structure and residual magnetization. On the other hand, a model has been developed in order to be able to simulate the electromagnetic interactions between a ferromagnetic specimen and the EC probe. The GMR sensors are characterized by high sensitivity at low frequency, large dynamic range and are relatively easy to implement. The studies carried out during this thesis allowed us to identify and analyse the “ghost signals” due to magnetic materials. In order to minimize the noise coming from the materials structure, a linear multi-frequencies combination of experimental signals has been employed successfully and the detection of buried flaws has been improved. The residual magnetization in ferromagnetic materials has been experimentally analyzed and an electronic system has been realized to fix the polarisation point of the sensor in the linear response zone of the GMR. Thus, disturbances caused by residual magnetization are successfully reduced. Beside, in order to develop simulation tools aiming at improving the understanding of experimental signals and optimizing the performances of ECT procedures, a model has been developed to simulate the ECT of planar, stratified and ferromagnetic materials affected with multiple flaws. CEA developed for many years semi-analytical models embedded into the simulation platform CIVA dedicated to non-destructive testing. Following a previous work carried out at the laboratory and already integrated in the simulation platform CIVA, developed at CEA-LIST, the new model extends CIVA functionalities to the ferromagnetic planar case. Simulation results are obtained through the application of the Volume Integral Method (VIM) which involves the dyadic Green’s functions. Two coupled integral equations have to be solved and the numerical resolution of the system is carried out using the classical Galerkin variant of the Method of Moments (MoM). Finally, the probe response is calculated by application of the Lorentz reciprocity theorem. A collaboration with the University of Cassino (Italy) and Laboratoire de Génie Electrique de Paris (France) allowed us to compare the three models on experimental and numerical results from literature. Results showed a good agreement between the three models and the model stability has been analyzed.

Page generated in 0.1165 seconds