• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROPRIÉTÉS ÉLECTRONIQUES DU GRAPHITE

Schneider, Johannes M. 26 October 2010 (has links) (PDF)
Dans cette thèse le magnétotransport à basse température (T = 10 mK) et l'effet de Haas-van Alphen sont examinés pour le graphite naturel et le graphite HOPG. Dans la première partie, le magnétotransport au champ magnétique jusqu'à B = 11 T est présenté. Une analyse de Fourier du signal après soustraction du fond de magnétorésistance montre que le transport électrique dans le graphite est dominé par deux types de porteurs avec des fréquences et phases en accord avec le modèle SWM. Nous confirmons la validité du modèle SWM par des calculs détaillés de la structure de bande en champ magnétique. Le mouvement de l'énergie de Fermi pour B > 2 T est calculé d'une manière auto-cohérente en supposant que la somme des concentrations des électrons et des trous est constante. Des mesures sous champs magnétiques intenses (0 < B < 28 T) sont employées pour étudier l'effet Zeeman et la phase de l'onde de densité de charge. En ce qui concerne l'effet Zeeman, les calculs SWM incluant le mouvement de l'énergie de Fermi nécessitent un facteur de Lande g = 2.5 pour reproduire la séparation de spin des motifs dans les données. Les mesures de l'onde de charge de densité confirment que le champ magnétique auquel l'onde de charge de densité apparait est lie a la température par une formule de type Bardeen-Cooper-Schrieffer (BCS). Des mesures de l'effet de Haas-van Alphen confirment les résultats obtenus par de magnétotransport à bas champ.
2

PROPRIÉTÉS ÉLECTRONIQUES DU GRAPHITE

Schneider, Johannes M. 26 October 2010 (has links) (PDF)
Dans cette thèse le magnétotransport à basse température (T = 10 mK) et l'effet de Haas-van Alphen sont examinés pour le graphite naturel et le graphite HOPG. Dans la première partie, le magnétotransport au champ magnétique jusqu'à B = 11 T est présenté. Une analyse de Fourier du signal après soustraction du fond de magnétorésistance montre que le transport électrique dans le graphite est dominé par deux types de porteurs avec des fréquences et phases en accord avec le modèle SWM. Nous confirmons la validité du modèle SWM par des calculs détaillés de la structure de bande en champ magnétique. Le mouvement de l'énergie de Fermi pour B > 2 T est calculé d'une manière auto-cohérente en supposant que la somme des concentrations des électrons et des trous est constante. Des mesures sous champs magnétiques intenses (0 < B < 28 T) sont employées pour étudier l'effet Zeeman et la phase de l'onde de densité de charge. En ce qui concerne l'effet Zeeman, les calculs SWM incluant le mouvement de l'énergie de Fermi nécessitent un facteur de Lande g = 2.5 pour reproduire la séparation de spin des motifs dans les données. Les mesures de l'onde de charge de densité confirment que le champ magnétique auquel l'onde de charge de densité apparait est lie a la température par une formule de type Bardeen-Cooper-Schrieffer (BCS). Des mesures de l'effet de Haas-van Alphen confirment les résultats obtenus par de magnétotransport à bas champ.
3

Oscillations quantiques et magnétotransport dans des systèmes à fortes corrélations électroniques

Levallois, Julien 30 October 2008 (has links) (PDF)
Dans cette thèse, nous nous sommes intéressés aux propriétés électroniques de deux familles de systèmes à fortes corrélations électroniques, les supraconducteurs à haute température critique (cuprates) et les fermions lourds, lorsqu'ils sont soumis à un fort champ magnétique (60 T). Depuis leur découverte en 1986, le diagramme de phase des supraconducteurs à haute température critique reste énigmatique. L'une des questions fondamentales concerne la nature de l'état normal à basse température. Dans la phase surdopée (p>0.16), on retrouve les caractéristiques d'un métal conventionnel, avec notamment une grande surface de Fermi. Dans la phase sous-dopée, les mesures d'ARPES semblent indiquer que la surface de Fermi n'est pas fermée et est seulement constituée d'arcs de Fermi déconnectés et aucune mesure expérimentale n'a permis jusqu'à présent de mettre en évidence une surface de Fermi fermée. En mesurant la résistance de Hall dans deux oxydes de cuivre de type YBCO, nous avons mis en évidence des oscillations quantiques établissant l'existence, à basse température, d'une surface de Fermi fermée et cohérente pour les cuprates sous-dopés. La faible fréquence d'oscillation mesurée indique que la surface de Fermi est constituée de petites poches, en fort contraste avec le grand cylindre observé du côté surdopé. De plus, l'observation d'un effet Hall négatif dans l'état normal à basse température suggère la présence d'électrons dans la surface de Fermi. On discute alors la possibilité qu'une reconstruction de la surface de Fermi entraîne l'apparition de petites poches d'électrons et de trous. Dans un second temps, nous présentons des mesures de magnétotransport et d'effet Nernst dans le fermion lourd URu2Si2 . Il apparaît que la mystérieuse phase ordre caché apparaissant à T <17.5 K soit caractérisée par des porteurs en faible nombre mais très mobiles, pouvant induire l'émergence d'un effet Nernst important. L'application d'un champ magnétique supérieur à 35 T à basse température déstabilise cet ordre et un état métallique plus conventionnel semble être restauré au dessus de 40 T.
4

Effet du manganèse sur l'épitaxie par jets moléculaires de nanofils de silicium et de germanium et fonctionnalisation de nanofils de germanium en vue d'applications en spintronique

Porret, Clément 08 September 2011 (has links) (PDF)
Ce mémoire présente une étude de la synthèse par la méthode Vapeur-Liquide-Solide (VLS) de nanofils de silicium et de germanium par Epitaxie par Jets Moléculaires ainsi que de l'effet de la présence de manganèse sur leur croissance. La croissance des nanofils est fortement modifiée par la présence de manganèse. Les nanofils de silicium élaborés sous un faible flux de manganèse présentent des propriétés morphologiques et structurales remarquables. La présence de manganèse modifie le diamètre d'équilibre des gouttes AuSi utilisées pour la croissance par voie VLS et permet l'élaboration de nanofils de silicium de longueurs élevées et de faibles diamètres. De plus, leur qualité cristalline est considérablement améliorée par rapport aux nanofils de silicium formés sans apport de manganèse. Dans ce mémoire nous proposons quelques explications à ce phénomène. Dans le cas des nanofils de germanium, l'incorporation de manganèse n'a pu être obtenue par codépôt. Aussi, (i) le dopage par implantation ionique de nanofils de germanium et (ii) la fonctionnalisation de nanofils de germanium par la formation d'hétérostructures type cœur/coquille Ge/GeMn ont été considérés : - les mesures d'aimantation effectuées sur des nanofils de germanium implantés au manganèse démontrent l'existence de propriétés ferromagnétiques avec des températures de Curie supérieures à 400K. Il s'agit d'un résultat très prometteur en vue d'applications utilisant des nanofils de germanium ferromagnétiques à température ambiante ; - pour accéder aux propriétés magnétiques des nanofils de germanium fonctionnalisés par dépôt de GeMn, nous avons mis au point une procédure de prises de contacts adaptée à la mesure de leurs propriétés de magnétotransport. Les caractéristiques électriques de ces dispositifs montrent que les propriétés de transport sont dominées par la présence de la couche coquille de GeMn, surtout à basse température. Des mesures de magnétotransport effectuées à 100K indiquent l'existence d'effets de magnétorésistance liés aux propriétés ferromagnétiques des nanofils de Ge ainsi fonctionnalisés.
5

Contacts ponctuels quantiques dans le graphène de haute mobilité / Quantum point contact in high mobility graphene

Zimmermann, Katrin 20 June 2016 (has links)
Dans le régime de l'effet Hall quantique, les porteurs de charge se propagent le long de canaux unidimensionnels situés au bords d'un gaz d'électron bidimensionel (2D electron gas, 2DEG). Un contact ponctuel quantique (quantum point contact, QPC) - une constriction étroite confinant spatialement le gaz électronique - permet de contrôler la transmission de ces canaux de bords. Dans un 2DEG conventionnel, une tension négative appliquée sur les grilles électrostatiques du QPC engendre la déplétion locale du gaz électronique sous la grille, forçant les électrons à se propager au travers de la constriction. Cependant, dans le graphène, du fait de l'absence de bande interdite, une tension négative provoque la transition continue du dopage d'électrons à trous. Dans le régime de l'effet Hall quantique, électrons et trous se propagent le long de l'interface p-n dans la même direction, et la diffusion inélastique induit un transfert de charge et du mélange entre eux.Au cours de cette thèse, nous avons fabriqué des dispositifs à base de graphène encapsulé dans deux feuillets de hBN, et munis de grilles électrostatiques définissant un QPC. Nous avons étudié l'effet du QPC sur la propagation des canaux de bords entiers et fractionnaires de l'effet Hall quantique, et sur le mélange entre eux. Dans l'effet Hall quantique, nous avons démontré que les canaux entiers et fractionnaires peuvent être contrôlés et sélectivement transmis au travers de la constriction. Du fait de la haute mobilité de nos structures, et de la levée de dégénérescence complète des niveaux de Landau qui en résulte à fort champ magnétique, l'équilibrage à l'interface p-n est réduit aux sous-niveaux de même spin et au niveau de Landau N=0.Un QPC dans le régime de l'effet Hall quantique constitue également un système idéal pour l'étude de l'effet tunnel des porteurs de charge entre canaux de bords fractionnaires, unidimensionnels et fortement corrélés, se propageant dans des directions opposées, décrits par la théorie de Tomonaga-Luttinger. Nous avons étudié l'effet tunnel entre canaux de bords fractionnaires dans notre structure muni un QPC, en nous concentrant sur l'état fractionnaire 7/3 et la dépendance en température de ses propriétés tunnels. / In the quantum Hall regime, the charge carriers are conducted within one-dimensional channels propagating at the edge of a two-dimensional electron gas (2DEG). A quantum point contact (QPC) – a narrow constriction confining spatially electron transport – can control the transmission of these quantum Hall edge channels. In conventional 2DEG systems, a negative voltage applied on the electrostatic split gates depletes locally the electrons underneath them forcing the electrons to pass through the constriction. In contrast, due to the absence of a band gap in graphene, a negative gate voltage induces a continuous shift of the doping from electrons to holes. In the quantum Hall regime, electron and hole edge channels propagate along the pn-interface in the same direction while inelastic scattering induces charge transfer and mixing between them.In this PhD thesis, we have fabricated ballistic graphene devices made by van der Waals stacking of hBN/Gr/hBN heterostructures, and equipped with split gates forming a quantum point contact (QPC) constriction. We have studied the effect of the QPC on the propagation of integer and fractional quantum Hall edge channels and the mixing among them. In the quantum Hall regime, we demonstrate that the integer and fractional quantum Hall edge channels can be controlled and selectively transmitted by the QPC. Due to the high mobility of our devices and the resultant full lifting of the degeneracies of the Landau levels in strong magnetic field, equilibration at the pn-interface is restricted to sublevels of identical spins of the N=0 Landau level.A QPC in the quantum Hall regime offers also an ideal system to study the tunnelling of charge carriers between counter-propagating fractional edge channels of highly correlated, one-dimensional fermions described by the theory of Tomonaga-Luttinger. We study the tunnelling between fractional quantum Hall edge channels in our QPC device in graphene and focus on the 7/3-fractional state to explore the temperature dependence of tunnelling characteristics.
6

Electronic properties of quasi-one-dimensional systems (C60@SWCNTs and InAs nanowires) studied by electronic transport under high magnetic field / Propriétés électroniques des systèmes quasi-unidimensionnels (C60@SWCNTs et nanofils d'InAs) étudiés par le transport électronique sous champ magnétique intense

Prudkovskiy, Vladimir 14 June 2013 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes quasi-unidimensionnels (quasi-1D) sous champ magnétique intense. Deux systèmes différents présentant un confinement électrique quasi-1D ont été considérés: les peapods de carbone (C60@SWCNTs) et les nanofils d'InAs. L’objectif de ces travaux consiste à sonder les propriétés électroniques spécifiques de ces systèmes quasi-1D par les mesures de magnétotransport sur les nano-objets uniques. Dans les deux cas, les expériences sous champs magnétiques intenses ont été accompagnée par des caractérisations structurales et des mesures de conductance à champ magnétique nul.L'encapsulation de diverses molécules à l'intérieur de nanotubes de carbone (CNTs), comme par exemple les fullerènes C60, constitue une des voies prometteuses vers l'accordabilité de la conductance des CNTs. Parmi la grande variété des nanotubes de carbone remplis, les peapods représentent une structure hybride pionnière découvert en 1998. Depuis lors, leur structure électronique a fait l’objet d’études théoriques controversées avec un nombre limité de réalisations expérimentales. Dans cette thèse, les propriétés électroniques des peapods individuels ont été étudiés en combinant les mesures de spectroscopie micro-Raman et de magnétotransport sur les mêmes échantillons. Nous avons constaté que les C60 encapsulés modifient fortement la structure de bande électronique des nanotubes semi-conducteurs au voisinage du point de neutralité de charge. Cette modification comprend un déplacement rigide de la structure électronique et un remplissage partiel de la bande interdite. Nous avons aussi montré que l’excitation UV sélective des fullerènes conduit à une forte modification du couplage électronique entre les C60 et le CNT induite par la coalescence partielle des C60 et de leur distribution à l'intérieur du tube. Les résultats expérimentaux sont supportés par des simulations numériques de la densité d'états et de la conductance des nanotubes de carbone avec des fullerènes fusionnés à l'intérieur (K. Katin, M. Maslov).Les nanofils semiconducteurs (sc-NWs) font l'objet de recherches actives depuis ces dix dernières années. Ils représentent des systèmes modèles pour l’étude des propriété électronique objet quasi-1D. Ils représentent en outre des possibilités de modulation de la structure de bande aussi que de contrôle de la densité de porteurs. Dans ce domaine de recherche, les nanofils semi-conducteurs à base de composes III-V tel que InAs, ont une place particulière en raison de la faible masse effective des porteurs de charge. Nous avons étudié la conductance de nanofils individuels dans une large gamme de champs magnétiques (jusqu'à 60T). Les mesures en champ nul et en champ faible ont démontré un transport faiblement diffusif dans ces nanofils. Les mesures de transport sous champ magnétique intense ont révélé une forte chute de la conductance au dessus d'un champ critique qui s'élève clairement avec l'énergie de Fermi. Cet effet est interprété par la perte de canaux de conduction une fois que toutes les sous-bandes magnéto-électriques, décalés vers les hautes énergies par le champ magnétique, ont traversé l'énergie de Fermi. Les calculs de structure de bande préliminaires (Y-M. Niquet), en prenant en compte les confinements latéraux et magnétiques, sont en bon accord qualitatif avec les résultats observés dans le régime de champ magnétique intense. Ce résultat est la première observation des effets de structure de bande dans les expériences de magnéto-transport sur les sc-NWs / The scope of this thesis is related to the electronic properties of quasi 1D systems probed by high field magnetotransport. Two different systems exhibiting quasi-1D confinement have been considered: carbon C60 peapods (C60@SWCNTs) and InAs semiconductor nanowires. The magnetotransport measurements on single nano-objets have been used to investigate the specific electronic structure of these 1D systems. In both cases, the high magnetic fields experiments have been supported by structural characterisation and conductance measurements at zero field.The encapsulation of various molecules inside carbon nanotubes (CNTs), as for instance C60 fullerenes encapsulated in SWCNT, constitutes promising routes towards the tunability of the CNT conductance. Among the wide variety of filled CNTs, peapods represent a pioneer hybrid structure discovered in 1998. Since that time, their electronic structure has been subjected to intense and controversial theoretical studies together with a limited number of experimental realizations. In this thesis the electronic properties of individual fullerene peapods have been investigated by combining micro-Raman spectroscopy and magnetotransport measurements on the same devices. We bring evidence that the encapsulated C60 strongly modify the electronic band structure of semiconducting nanotubes in the vicinity of the charge neutrality point, including a rigid shift and a partial filling of the energy gap. In addition by playing with a selective UV excitation of the fullerene, we demonstrate that the electronic coupling between the C60 and the CNT is strongly modified by the partial coalescence of the C60 and their distribution inside the tube. The experimental results are supported by numerical simulations of the Density of States and the conductance of CNTs with coalesced fullerenes inside (K. Katin, M. Maslov).Semiconductor nanowires (sc-NWs) are being the subject of intense researches started a decade ago. They represent model systems for the exploration of the electronic properties inerrant to the quasi1-D confinement. Moreover they offer the possibility to play with band structure tailoring and carrier doping. In this direction III-V sc-NWs such as InAs NWs have played a particular role due to the small electron effective mass. We have studied the high magnetic field conductance of single nanowires. Prior to the high field measurements, the zero and low field investigations have demonstrated a weakly diffusive regime of the carrier transport in these wires. The high field investigations have revealed a drastic conductance drop above a critical field, which clearly rises with the Fermi energy. This effect is interpreted by the loss of conducting channels once all the magneto-electric subbands, shifted toward the high energy range by the magnetic field, have crossed the Fermi energy. Preliminary band structure calculations (Y-M. Niquet), taking into account the lateral and magnetic confinements, are in fairly good qualitative agreement with the observed result in the high field regime. This result is the first observation of band structure effects in magneto-transport experiments on sc-NWs
7

Effet du manganèse sur l'épitaxie par jets moléculaires de nanofils de silicium et de germanium et fonctionnalisation de nanofils de germanium en vue d'applications en spintronique / Effect of manganese on the growth of silicon and germanium nanowires by molecular beam epitaxy and functionalization of germanium nanowires for spintronic applications

Porret, Clément 08 September 2011 (has links)
Ce mémoire présente une étude de la synthèse par la méthode Vapeur-Liquide-Solide (VLS) de nanofils de silicium et de germanium par Epitaxie par Jets Moléculaires ainsi que de l'effet de la présence de manganèse sur leur croissance. La croissance des nanofils est fortement modifiée par la présence de manganèse. Les nanofils de silicium élaborés sous un faible flux de manganèse présentent des propriétés morphologiques et structurales remarquables. La présence de manganèse modifie le diamètre d'équilibre des gouttes AuSi utilisées pour la croissance par voie VLS et permet l'élaboration de nanofils de silicium de longueurs élevées et de faibles diamètres. De plus, leur qualité cristalline est considérablement améliorée par rapport aux nanofils de silicium formés sans apport de manganèse. Dans ce mémoire nous proposons quelques explications à ce phénomène. Dans le cas des nanofils de germanium, l'incorporation de manganèse n'a pu être obtenue par codépôt. Aussi, (i) le dopage par implantation ionique de nanofils de germanium et (ii) la fonctionnalisation de nanofils de germanium par la formation d'hétérostructures type cœur/coquille Ge/GeMn ont été considérés : - les mesures d'aimantation effectuées sur des nanofils de germanium implantés au manganèse démontrent l'existence de propriétés ferromagnétiques avec des températures de Curie supérieures à 400K. Il s'agit d'un résultat très prometteur en vue d'applications utilisant des nanofils de germanium ferromagnétiques à température ambiante ; - pour accéder aux propriétés magnétiques des nanofils de germanium fonctionnalisés par dépôt de GeMn, nous avons mis au point une procédure de prises de contacts adaptée à la mesure de leurs propriétés de magnétotransport. Les caractéristiques électriques de ces dispositifs montrent que les propriétés de transport sont dominées par la présence de la couche coquille de GeMn, surtout à basse température. Des mesures de magnétotransport effectuées à 100K indiquent l'existence d'effets de magnétorésistance liés aux propriétés ferromagnétiques des nanofils de Ge ainsi fonctionnalisés. / This thesis presents a study of the Vapour-Liquid-Solid (VLS) synthesis of silicon and germanium nanowires by Molecular Beam Epitaxy and the effect of the presence of manganese on the growth properties. The presence of manganese strongly modifies the growth of nanowires and observed behaviours are very different for AuSi and AuGe systems. Silicon nanowires grown in the presence of manganese exhibit very interesting morphological and structural properties. The presence of manganese modifies AuSi droplets' diameter and allows manufacturing long nanowires with relatively small diameters. Moreover, the crystalline quality is dramatically improved as compared to that of silicon nanowires grown without manganese. In this manuscript we propose some explanation for the growth phenomena. In the case of germanium nanowires, manganese incorporation could not be obtained by concomitant deposition of germanium and manganese. Consequently, (i) the doping of germanium nanowires by ion implantation as well as (ii) germanium nanowires functionalization by core/shell Ge/GeMn heterostructures formation were considered: - magnetization measurements performed on implanted germanium nanowires demonstrate ferromagnetic properties with Curie temperatures above 400K. This result is very promising for the processing of devices using room-temperature ferromagnetic germanium nanowires ; - in order to access Ge/GeMn nanowires magnetic properties, we processed samples to probe nanowires magnetotransport properties. Electrical resistivities of devices show that transport properties are dominated by GeMn shell layer even more at low temperature. Magnetotransport measurements done at 100K indicate magnetoresistance effects linked with nanowires ferromagnetic properties.
8

Sur un nouveau procédé de frittage de céramiques à basse température : le frittage hydrothermal. Développement et approche mécanistique / On a new process for the low temperature sintering of ceramics and multimaterials : the hydrothermal sintering. Development and mechanistic approach

Ndayishimiye, Arnaud 19 December 2017 (has links)
Le développement de nouveaux matériaux à hautes performances dépend fortement des procédés de frittage mis en oeuvre. La réduction de l’énergie libre de surface, force motrice de la densification, peut être activée en appliquant une pression extérieure et/ou en améliorant les processus de diffusion en phase solide ou liquide à l’aide de chauffages ultra rapides, les procédés associés requérant de hautes températures. Ainsi, le challenge est de permettre une densification à basse température afin de surmonter les verrous technologiques actuels (procédé peu coûteux et économe en énergie ; frittage de matériaux métastables, à basse température de décomposition et/ou nanométriques ; cofrittage de multimatériaux). Dans ce contexte, un procédé innovant de frittage hydrothermal inspiré des processus géologiques de densification a été développé : une contrainte uniaxiale est appliquée à une poudre en présence d’eau en conditions hydrothermales sur des durées relativement courtes. La force motrice principale réside dans les gradients de contrainte intragranulaires générant des phénomènes de dissolution-précipitation aux interfaces liquide/solide. Outre une optimisation du procédé, l’objectif principal a été la compréhension des mécanismes complexes spécifiques au frittage hydrothermal d’un matériau modèle, la silice nanométrique. Il a été montré que les effets mécano-chimiques à l’origine du fluage par dissolution sous contrainte sont assistés avec synergie par des effets chimiques de type polycondensation. L’influence de chaque paramètre de frittage (température, pression, durée de palier, rampe de montée en température, quantité de solvant, utilisation d’un co-solvant ou d’un agent minéralisateur) a été identifiée et a permis d’optimiser la densification de la silice (86-88% de compacité). De plus, du quartz-α massif polycristallin et nanométrique a pu être obtenu avec une densité relative de 98%. Enfin, le frittage hydrothermal a été mis en oeuvre pour la densification de multimatériaux complexes. Des nanocomposites de type 0-3 où des nanoparticules de pérovskite de manganèse sont dispersées dans une matrice de silice ont ainsi été obtenus. L’apport de cette nanostructuration sur les propriétés de magnétotransport a été évalué. / The development of new high performance advanced materials is strongly dependent on the mastering of sintering processes. The driving force for densification is the decrease of surface free energy, which can be promoted either by applying a pressure and/or by enhancing diffusional mechanisms in a solid or liquid phase with ultra-fast heating routes. High temperatures are then usually required in the as-involved processes. The challenge is to perform densification at low temperature in order to overcome current technological barriers (energy- and cost-efficiency of the process; sintering of metastable, low temperature decomposition and/or nanometric materials; cosintering of multimaterials). In this context, we have developed an innovative hydrothermal sintering process which is geologically-inspired: a powder mixed with water is externally and mechanically compressed under hydrothermal conditions over short time periods. The main driving force is the stress gradient within grains induced by external uniaxial compression which allows the activation of the dissolution/precipitation phenomenon at solid/liquid interfaces. Besides the technological development of the apparatus, our goal was to understand all the complex mechanisms involved in the hydrothermal sintering of a model material, nanometric silica. We have shown that the mechanical-chemical effects (pressure solution creep) were synergistically assisted by chemical ones (polycondensation). The influence of each parameter (temperature, pressure, time, heating rate, solvent amount, use of a co-solvent or of a mineralizer) were investigated. Consequently, the densification of silica was optimized, reaching 86-88% of relative density. In addition, bulk polycrystalline nanometric α -quartz with 98% of relative density was obtained. Finally, the hydrothermal sintering process has been implemented to densify complex multimaterials. In this way, 0-3 type nanocomposites where nanometric manganese perovskite are embedded in a silica matrix have been obtained. The advantage of nanostructuration on magnetotransport properties was evaluated.

Page generated in 0.0694 seconds