• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 608
  • 163
  • 82
  • 64
  • 58
  • 50
  • 26
  • 25
  • 25
  • 25
  • 25
  • 25
  • 20
  • 20
  • 13
  • Tagged with
  • 1373
  • 251
  • 151
  • 140
  • 137
  • 136
  • 132
  • 124
  • 101
  • 101
  • 86
  • 85
  • 85
  • 83
  • 82
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

An Investigation of the Formability of ZEK100 Mg Alloy Using Pneumatic Bulge Formability Testing Methods

Bourgeois, John Briou 09 December 2016 (has links)
The current study investigates the formability of ZEK100, a rare-earth containing magnesium alloy, using an in-house developed technique of pneumatic bulge forming. The thesis pursued innovation of sample preparation, testing, and experimental data analysis in order to create several forming limit diagrams (FLDs) of critical importance for determining a methodology for Mg formability. Samples were bulged through elliptical and circular dies at room temperature, 150 C, and 250 C, in two orientations, rolling direction (RD) and transverse direction (TD), in order to determine temperature dependence and orientation characteristics. The current research concluded ZEK100 is not a suitable alloy for room temperature forming processes used in automotive industries. Little difference between safe and marginal, as well as marginal and failure strain ratios was seen for RD orientation testing, while greater resolution is evident for TD orientation testing. ZEK100 exhibits a temperature dependence in relation to limiting strain between RD and TD.
172

The effect of porosity distribution on the predicted mechanical response of die cast AM60B magnesium

Hardin, David Barrett 07 August 2010 (has links)
In this paper, it is clearly shown that the distribution of the initial porosity is a critical factor in the prediction of damage evolution and initiation of failure in a cast AM60B magnesium notch Bridgeman tensile specimen. Using X-ray computed tomography, the actual initial porosity distribution was obtained, and this distribution was input into a finite element code as an initial condition. The predicted damage evolution from this simulation was compared to the damage evolution of the experimental specimen as well as other simulated porosity distributions. This study shows that the simulation of the actual porosity distribution predicted well the damage evolution observed in the experiment. It is also shown that the initial distribution of porosity plays a vital role in the predicted elongation to failure of a notched specimen. The actual distribution was shown to fail at a significantly lower strain than random or uniformly distributed damage.
173

Structure-Property Relations and Modeling of Small Crack Fatigue Behavior of Various Magnesium Alloys

Bernard, J Daniel 11 May 2013 (has links)
Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multiaceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.
174

The partial annealing of aluminum-magnesium alloys.

Parsons, David Victor. January 1967 (has links)
No description available.
175

Study of Upset Protrusion Joining Process for Joining a Cast Magnesium Component to Other Sheet Materials

Andreae, Nicholas 23 November 2015 (has links)
Magnesium alloys are being increasing considered for many automotive applications due their low density and high strength to weight ratio. However, joining of these materials by welding and especially to dissimilar materials such as aluminum or steel or mechanically by riveting at room temperature have faced many challenges. Research presented in thesis explores a new hot joining process referred to as Upset Protrusion Joining (or UPJ) as a means of mechanically joining cast magnesium alloy to other similar or dissimilar sheet materials. UPJ is being developed as a rapid and reliable joining method to be implemented in the automotive industry for weight and manufacturing cost reduction. It involves a cylindrical protrusion emanating perpendicular to the flat surface of a cast plate-like magnesium component that is fitted through a hole in another plate or sheet material. The two components are then clamped together, electrically heated and compressed perpendicular to the axis of the protrusion. During this process, the protrusion expands circumferentially to fill the hole as well as the region above the hole thus entrapping the sheet metal between the mushroomed head and the casting. The effect of different UPJ process parameters such as applied current, current duration, compression loading rate and compression distance were studied through experimentation that involved a newly developed computer-controlled experimental UPJ setup. The studies involved two cast magnesium alloys of interest to automotive industry, AM60 and AZ91, with protrusions of 11 mm diameter and 14 mm height on a 2 mm thick plate. Studies of the material properties and UPJ process parameters were performed to find optimal process parameters to achieve satisfactory quality of the joint in terms of post-UPJ joint strength with appearance. Also, microstructural studies, temperature measurements in the protrusion region, and electrical resistivity measurements were performed for the two alloys to fundamentally understand their roles in promoting temperature dependent material flow, strain localization, and fracture in the UPJ process. Lastly, materials specific process window for UPJ process was identified based on the experimental work for creation of robust UPJ joints with acceptable joint strengths in tensile shear mode of failure. This new hot joining method was shown as an industrially viable joining method for cast magnesium component. UPJ is a rapid joining method and provides good joint-strength depending upon joint specifications. This method can be implemented in automotive and other industrial manufacturing environment for joining cast component to a similar or dissimilar wrought sheet component. / Thesis / Master of Applied Science (MASc)
176

Angular Correlations in Mg24

Mabey, Clive 05 1900 (has links)
<p> A method is described by which spins of nuclear energy levels might be determined, which is a combination of coincidence experiments with Sodium Iodide detectors and angular distribution measurements with high resolution solid state detectors. The method is applied to the 8.87 MeV level in Mg24. </p> / Thesis / Master of Science (MSc)
177

STUDIES ON THE VIRULENCE PROPERTIES AND REGULATION OF THE CorA MAGNESIUM CHANNEL

Papp-Wallace, Krisztina Margaret 07 April 2008 (has links)
No description available.
178

Design and Simulation of a Magnesium Based Biodegradable Stent for Hemodialysis Application

Xu, Chenhao January 2015 (has links)
No description available.
179

Studies on the renal glomerulo-tubular relationships as revealed by the effects of ureteral pressure on the excretion of magnesium, calcium, and other electrolytes, with appendices on the flame spectrophotometric determination of magnesium and calcium /

Rothe, Carl Frederick January 1955 (has links)
No description available.
180

Influence of magnesium on growth and development of certain corn inbreds and soybean varieties in nutrient solution culture and representative Ohio soils /

Peel, Robert Dean January 1953 (has links)
No description available.

Page generated in 0.0444 seconds