• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solid solution strengthening of magnesium

Akhtar, Ainul January 1968 (has links)
Solid solution strengthening in magnesium polycrystals containing Zn, Al, Cd, In and Pb as solute has been investigated over the temperatures between 78° and 513°K with particular emphasis on the dilute alloys. The variation of yield stress with concentration occurs in either two or three stages. In stage I, the yield stress increases rapidly and linearly with concentration; in stage II, the rate of increase of yield stress is very much less than in stage I; in stage III, the yield stress decreases with solute additions. The solution hardening rates and the transition concentrations from stage I to stage II (C[subscript T]) depend on the size-difference between Mg and the solutes. The results are discussed in terms of the variation with concentration of the CRSS for both basal and prismatic slip. It is proposed that at concentrations less than C[subscript T], the increase in CRSS for prismatic slip is the dominant factor; beyond C[subscript T], yield is governed by a balance between basal hardening and prismatic softening. The effect of solute on the ductility of magnesium at elevated temperatures is discussed in terms of a stress induced polygonization process and the ductility maxima observed in the Mg-Al alloys are explained. Single crystals of Mg-Zn alloys oriented for basal slip have been deformed in tension over the temperature range from 78°K to 423°K. The variation of the basal dislocation density caused by the addition of solute has been studied using transmission electron microscopy of thin foils. The increase in dislocation density which was found to be proportional to the square root of the solute concentration, cannot account for the observed increase in the athermal stress. A dislocation etch pit technique has been developed and used to measure the variation in the forest dislocation density with solute concentration. The forest density increases linearly and rapidly up to a certain minimum solute concentration, beyond which it remains almost constant. The results are in good agreement with the observed thermally activated flow stress for low solute concentrations. The observed variation in the athermal component of CRSS has been discussed in the light of an increased friction stress arising due to a random distribution of solute. Using rate theory, it has been shown that the forest intersection remains the rate controlling mechanism up to a certain low concentration of solute beyond which the single solute atom pinning of dislocations becomes the rate determining process. The solute dependence of the work hardening parameters are also reported and examined in the light of the existing theories of work hardening. Single crystals of Mg - Zn and Mg- Al alloys have also been deformed so as to suppress basal slip and {1012} twinning and to induce prismatic slip. The results have been explained in terms of an increasing athermal stress and a decreasing Peierls stress with the addition of solute. Peierls stress has been shown to be the rate controlling mechanism below room temperature. The observed variation of CRSS for prism slip with solute concentration accounts adequately for the concentration dependence of yield stress in the polycrystalline aggregate. The results also suggest that the decrease in Peierls stress with solute addition is not necessarily associated with a decreasing c/a ratio and the monovalent nature of the solute. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
2

Phase Evolution In The MgO-MgAl2O4 System Under Non-Equilibrium Processing Conditions

Bhatia, Tania 12 1900 (has links) (PDF)
No description available.
3

Electrochemical behaviors of micro-arc oxidation coated magnesium alloy

Liu, Jiayang January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years, magnesium alloys, due to their high strength and biocompatibility, have attracted significant interest in medical applications, such as cardiovascular stents, orthopedic implants, and devices. To overcome the high corrosion rate of magnesium alloys, coatings have been developed on the alloy surface. Most coating methods, such as anodic oxidation, polymer coating and chemical conversion coating, cannot produce satisfactory coating to be used in human body environment. Recent studies demonstrate that micro-arc oxidation (MAO) technique can produce hard, dense, wear-resistant and well-adherent oxide coatings for light metals such as aluminum, magnesium, and titanium. Though there are many previous studies, the understanding of processing conditions on coating performance remains elusive. Moreover, previous tests were done in simulated body fluid. No test has been done in a cell culture medium, which is much closer to human body environment than simulated body fluid. In this study, the effect of MAO processing time (1 minute, 5 minutes, 15 minutes, and 20 minutes) on the electrochemical behaviors of the coating in both conventional simulated body fluid and a cell culture medium has been investigated. Additionally a new electrolyte (12 g/L Na2SiO3, 4 g/L NaF and 4 ml/L C3H8O3) has been used in the MAO coating process. Electrochemical behaviors were measured by performing potentiodynamic polarization and electrochemical impedance spectroscopy tests. In addition to the tests in simulated body fluid, the MAO-coated and uncoated samples were immersed in a cell culture medium to investigate the corrosion behaviors and compare the difference in these two kinds of media. The results show that in the immersion tests in conventional simulated body fluid, the 20-minute MAO coated sample has the best resistance to corrosion due to the largest coating thickness. In contrast, in the cell culture medium, all MAO coated samples demonstrate a similar high corrosion resistance behavior, independent of MAO processing time. This is probably due to the organic passive layers formed on the coating surfaces. Additionally, a preliminary finite element model has been developed to simulate the immersion test of magnesium alloy in simulated body fluid. Comparison between the predicted corrosion current density and experimental data is discussed.

Page generated in 0.0589 seconds