Spelling suggestions: "subject:"magnetencephalografie"" "subject:"magnetoencephalographie""
1 |
Development and Evaluation of Data Processing Techniques in MagnetoencephalographySchönherr, Margit 27 September 2012 (has links) (PDF)
With MEG, the tiny magnetic fields produced by neuronal currents within the brain can be measured completely non-invasively. But the signals are very small (~100 fT) and often obscured by spontaneous brain activity and external noise. So, a recurrent issue in MEG data analysis is the identification and elimination of this unwanted interference within the recordings. Various strategies exist to meet this purpose. In this thesis, two of these strategies are scrutinized in detail.
The first is the commonly used procedure of averaging over trials which is a successfully applied data reduction method in many neurocognitive studies. However, the brain does not always respond identically to repeated stimuli, so averaging can eliminate valuable information. Alternative approaches aiming at single trial analysis are difficult to realize and many of them focus on temporal patterns.
Here, a compromise involving random subaveraging of trials and repeated source localization is presented. A simulation study with numerous examples demonstrates the applicability of the new method. As a result, inferences about the generators of single trials can be drawn which allows deeper insight into neuronal processes of the human brain.
The second technique examined in this thesis is a preprocessing tool termed Signal Space Separation (SSS). It is widely used for preprocessing of MEG data, including noise reduction by suppression of external interference, as well as movement correction.
Here, the mathematical principles of the SSS series expansion and the rules for its application are investigated. The most important mathematical precondition is a source-free sensor space. Using three data sets, the influence of a violation of this convergence criterion on source localization accuracy is demonstrated. The analysis reveals that the SSS method works reliably, even when the convergence criterion is not fully obeyed.
This leads to utilizing the SSS method for the transformation of MEG data to virtual sensors on the scalp surface. Having MEG data directly on the individual scalp surface would alleviate sensor space analysis across subjects and comparability with EEG.
A comparison study of the transformation results obtained with SSS and those produced by inverse and subsequent forward computation is performed. It shows strong dependence on the relative position of sources and sensors. In addition, the latter approach yields superior results for the intended purpose of data transformation.
|
2 |
Development and Evaluation of Data Processing Techniques in MagnetoencephalographySchönherr, Margit 12 July 2012 (has links)
With MEG, the tiny magnetic fields produced by neuronal currents within the brain can be measured completely non-invasively. But the signals are very small (~100 fT) and often obscured by spontaneous brain activity and external noise. So, a recurrent issue in MEG data analysis is the identification and elimination of this unwanted interference within the recordings. Various strategies exist to meet this purpose. In this thesis, two of these strategies are scrutinized in detail.
The first is the commonly used procedure of averaging over trials which is a successfully applied data reduction method in many neurocognitive studies. However, the brain does not always respond identically to repeated stimuli, so averaging can eliminate valuable information. Alternative approaches aiming at single trial analysis are difficult to realize and many of them focus on temporal patterns.
Here, a compromise involving random subaveraging of trials and repeated source localization is presented. A simulation study with numerous examples demonstrates the applicability of the new method. As a result, inferences about the generators of single trials can be drawn which allows deeper insight into neuronal processes of the human brain.
The second technique examined in this thesis is a preprocessing tool termed Signal Space Separation (SSS). It is widely used for preprocessing of MEG data, including noise reduction by suppression of external interference, as well as movement correction.
Here, the mathematical principles of the SSS series expansion and the rules for its application are investigated. The most important mathematical precondition is a source-free sensor space. Using three data sets, the influence of a violation of this convergence criterion on source localization accuracy is demonstrated. The analysis reveals that the SSS method works reliably, even when the convergence criterion is not fully obeyed.
This leads to utilizing the SSS method for the transformation of MEG data to virtual sensors on the scalp surface. Having MEG data directly on the individual scalp surface would alleviate sensor space analysis across subjects and comparability with EEG.
A comparison study of the transformation results obtained with SSS and those produced by inverse and subsequent forward computation is performed. It shows strong dependence on the relative position of sources and sensors. In addition, the latter approach yields superior results for the intended purpose of data transformation.
|
Page generated in 0.0418 seconds