• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Evaluation of Data Processing Techniques in Magnetoencephalography

Schönherr, Margit 27 September 2012 (has links) (PDF)
With MEG, the tiny magnetic fields produced by neuronal currents within the brain can be measured completely non-invasively. But the signals are very small (~100 fT) and often obscured by spontaneous brain activity and external noise. So, a recurrent issue in MEG data analysis is the identification and elimination of this unwanted interference within the recordings. Various strategies exist to meet this purpose. In this thesis, two of these strategies are scrutinized in detail. The first is the commonly used procedure of averaging over trials which is a successfully applied data reduction method in many neurocognitive studies. However, the brain does not always respond identically to repeated stimuli, so averaging can eliminate valuable information. Alternative approaches aiming at single trial analysis are difficult to realize and many of them focus on temporal patterns. Here, a compromise involving random subaveraging of trials and repeated source localization is presented. A simulation study with numerous examples demonstrates the applicability of the new method. As a result, inferences about the generators of single trials can be drawn which allows deeper insight into neuronal processes of the human brain. The second technique examined in this thesis is a preprocessing tool termed Signal Space Separation (SSS). It is widely used for preprocessing of MEG data, including noise reduction by suppression of external interference, as well as movement correction. Here, the mathematical principles of the SSS series expansion and the rules for its application are investigated. The most important mathematical precondition is a source-free sensor space. Using three data sets, the influence of a violation of this convergence criterion on source localization accuracy is demonstrated. The analysis reveals that the SSS method works reliably, even when the convergence criterion is not fully obeyed. This leads to utilizing the SSS method for the transformation of MEG data to virtual sensors on the scalp surface. Having MEG data directly on the individual scalp surface would alleviate sensor space analysis across subjects and comparability with EEG. A comparison study of the transformation results obtained with SSS and those produced by inverse and subsequent forward computation is performed. It shows strong dependence on the relative position of sources and sensors. In addition, the latter approach yields superior results for the intended purpose of data transformation.
2

Development and Evaluation of Data Processing Techniques in Magnetoencephalography

Schönherr, Margit 12 July 2012 (has links)
With MEG, the tiny magnetic fields produced by neuronal currents within the brain can be measured completely non-invasively. But the signals are very small (~100 fT) and often obscured by spontaneous brain activity and external noise. So, a recurrent issue in MEG data analysis is the identification and elimination of this unwanted interference within the recordings. Various strategies exist to meet this purpose. In this thesis, two of these strategies are scrutinized in detail. The first is the commonly used procedure of averaging over trials which is a successfully applied data reduction method in many neurocognitive studies. However, the brain does not always respond identically to repeated stimuli, so averaging can eliminate valuable information. Alternative approaches aiming at single trial analysis are difficult to realize and many of them focus on temporal patterns. Here, a compromise involving random subaveraging of trials and repeated source localization is presented. A simulation study with numerous examples demonstrates the applicability of the new method. As a result, inferences about the generators of single trials can be drawn which allows deeper insight into neuronal processes of the human brain. The second technique examined in this thesis is a preprocessing tool termed Signal Space Separation (SSS). It is widely used for preprocessing of MEG data, including noise reduction by suppression of external interference, as well as movement correction. Here, the mathematical principles of the SSS series expansion and the rules for its application are investigated. The most important mathematical precondition is a source-free sensor space. Using three data sets, the influence of a violation of this convergence criterion on source localization accuracy is demonstrated. The analysis reveals that the SSS method works reliably, even when the convergence criterion is not fully obeyed. This leads to utilizing the SSS method for the transformation of MEG data to virtual sensors on the scalp surface. Having MEG data directly on the individual scalp surface would alleviate sensor space analysis across subjects and comparability with EEG. A comparison study of the transformation results obtained with SSS and those produced by inverse and subsequent forward computation is performed. It shows strong dependence on the relative position of sources and sensors. In addition, the latter approach yields superior results for the intended purpose of data transformation.
3

Refinement of Raman spectra from extreme background and noise interferences: Cancer diagnostics using Raman spectroscopy

Gebrekidan, Medhanie Tesfay 01 March 2022 (has links)
Die Raman-Spektroskopie ist eine optische Messtechnik, die in der Lage ist, spektroskopische Information zu liefern, welche molekülspezifisch und einzigartig in Bezug auf die Eigenschaften der untersuchten Spezies sind. Sie ist ein unverzichtbares analytisches Instrument, das Anwendung in verschiedenen Bereichen findet, wie etwa der Medizin oder der in situ Beobachtung von chemischen Prozessen. Wegen ihren Eigenschaften, wie der hohen Spezifität und der Möglichkeit von Tracer-freien Messung, hat die Raman-Spektroskopie die Tumordiagnostik stark beeinflusst. Aufgrund einer äußerst starken Beeinflussung der Raman-Spektren durch Hintergrundsignale, ist das Isolieren und Interpretieren von Raman-Spektren eine große Herausforderung. Im Rahmen dieser Arbeit wurden verschiedene Ansätze der Spektrenbearbeitung entwickelt, die benötigt werden um Raman-Spektren aus verrauschten und stark mit Hintergrundsignalen behafteten Rohspektren zu extrahieren. Diese Ansätze beinhalten im Speziellen eine auf dem Vector-Casting basierende Methode zur Rauschminimierung und eine auf dem deep neural networks basierende Methoden zur Entfernung von Rauschen und Hintergrundsignalen. Verschiedene neuronale Netze wurden mittels simulierter Spektren trainiert und an experimentell gemessenen Spektren evaluiert. Die im Rahmen dieser Arbeit vorgeschlagenen Ansätze wurden mit alternativen Methoden auf dem aktuellen Stand der Entwicklung unter Zuhilfenahme von verschiedenen Signal-Rausch-Verhältnissen, Standardabweichungen und dem Structural Similarity Index verglichen. Die hier entwickelten Ansätze zeigen gute Ergebnisse und sind bisher bekannten Methoden überlegen, vor allem für Raman-Spektren mit einem niedrigem Signal-Rausch-Verhältnis und extrem starken Fluoreszenz-Hintergrund. Zusätzlich erfordern die auf Deep Neural Networks basierten Methoden keinerlei menschliches Eingreifen. Die Motivation hinter dieser Arbeit ist die Verbesserung der Raman-Spektroskopie, vor allem der Shifted-Excitation Raman Difference Spectroscopy (SERDS) hin zu einem noch besseren Instrument in der Prozessanalytik und Tumordiagnostik. Die Integration der oben genannten Ansätze zur Spektrenbearbeitung von SERDS in Kombination mit Methoden des maschinellen Lernens ermöglichen es, physiologische Schleimhaut, nicht-maligne Läsionen und orale Plattenepithelkarzinome mit einer Genauigkeit zu unterscheiden, die bisherigen Methoden überlegen ist. Die spezifischen Merkmale in den bearbeiteten Raman-Spektren können verschiedenen chemischen Zusammensetzungen in den jeweiligen Geweben zugeordnet werden. Die Übertragbarkeit auf einen ähnlichen Ansatz zur Erkennung von Brusttumoren wurde überprüft. Die bereinigten Raman-Spektren von normalem Brustgewebe, Fibroadenoma und invasiven Mammakarzinom konnten mithilfe der spektralen Eigenschaften von Proteinen, Lipiden und Nukleinsäuren unterschieden werden. Diese Erkenntnisse lassen das Potential von SERDS in Kombination mit Ansätzen des maschinellen Lernens als universelles Werkzeug zur Tumordiagnose erkennen.:Versicherung Abstract Zusammenfassung der Ergebnisse der Dissertation Table of Contents Abbreviations and symbols 1 Introduction 2 State of the art of the purification of Raman spectra 2.1 Experimental methods for the enhancement of the signal-to-background ratio and the signal-to-noise ratio 2.2 Mathematical methods for the extraction of pure Raman spectra from raw spectra 2.3 Raman based cancer diagnostics 2.4 Neural networks for the evaluation of Raman spectra 2.5 Objective 3 Application relevant fundaments 3.1 Basics of Raman spectroscopy 3.2 Simulation of raw Raman spectra 3.3 Shifted-excitation Raman difference Spectroscopy 3.4 Raman experimental setup 3.5 Mathematical method for Raman spectra refinement 3.6 Deep neural networks 4 Summary of the published results 4.1 A shifted-excitation Raman difference spectroscopy evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference 4.2 Vector casting for noise reduction 4.3 Refinement of spectra using a deep neural network; fully automated removal of noise and background 4.4 Breast Tumor Analysis using Shifted Excitation Raman difference Spectroscopy 4.5 Optical diagnosis of clinically apparent lesions of oral cavity by label free Raman spectroscopy Conclusion / Raman spectroscopy is an optical measurement technique able to provide spectroscopic information that is molecule-specific and unique to the nature of the specimen under investigation. It is an invaluable analytical tool that finds application in several fields such as medicine and in situ chemical processing. Due to its high specificity and label-free features, Raman spectroscopy greatly impacted cancer diagnostics. However, retrieving and interpreting the Raman spectrum that contains the molecular information is challenging because of extreme background interference. I have developed various spectra-processing approaches required to purify Raman spectra from noisy and heavily background interfered raw Raman spectra. In detail, these are a new noise reduction method based on vector casting and new deep neural networks for the efficient removal of noise and background. Several neural network models were trained on simulated spectra and then tested with experimental spectra. The here proposed approaches were compared with the state-of-the-art techniques via different signal-to-noise ratios, standard deviation, and the structural similarity index metric. The methods presented here perform well and are superior in comparison to what has been reported before, especially at small signal-to-noise ratios, and for extreme fluorescence interfered raw Raman spectra. Furthermore, the deep neural network-based methods do not rely on any human intervention. The motivation behind this study is to make Raman spectroscopy, especially the shifted-excitation Raman difference spectroscopy (SERDS), an even better tool for process analytics and cancer diagnostics. The integration of the above-mentioned spectra-processing approaches into SERDS in combination with machine learning tools enabled the differentiation between physiological mucosa, non-malignant lesions, and oral squamous cell carcinomas with high accuracy, above the state of the art. The distinguishable features obtained in the purified Raman spectra are assignable to different chemical compositions of the respective tissues. The feasibility of a similar approach for breast tumors was also investigated. The purified Raman spectra of normal breast tissue, fibroadenoma, and invasive carcinoma were discriminable with respect to the spectral features of proteins, lipids, and nucleic acid. These findings suggest the potential of SERDS combined with machine learning techniques as a universal tool for cancer diagnostics.:Versicherung Abstract Zusammenfassung der Ergebnisse der Dissertation Table of Contents Abbreviations and symbols 1 Introduction 2 State of the art of the purification of Raman spectra 2.1 Experimental methods for the enhancement of the signal-to-background ratio and the signal-to-noise ratio 2.2 Mathematical methods for the extraction of pure Raman spectra from raw spectra 2.3 Raman based cancer diagnostics 2.4 Neural networks for the evaluation of Raman spectra 2.5 Objective 3 Application relevant fundaments 3.1 Basics of Raman spectroscopy 3.2 Simulation of raw Raman spectra 3.3 Shifted-excitation Raman difference Spectroscopy 3.4 Raman experimental setup 3.5 Mathematical method for Raman spectra refinement 3.6 Deep neural networks 4 Summary of the published results 4.1 A shifted-excitation Raman difference spectroscopy evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference 4.2 Vector casting for noise reduction 4.3 Refinement of spectra using a deep neural network; fully automated removal of noise and background 4.4 Breast Tumor Analysis using Shifted Excitation Raman difference Spectroscopy 4.5 Optical diagnosis of clinically apparent lesions of oral cavity by label free Raman spectroscopy Conclusion

Page generated in 0.0657 seconds