• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 92
  • 58
  • 16
  • 14
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 559
  • 559
  • 85
  • 84
  • 76
  • 76
  • 66
  • 57
  • 54
  • 53
  • 48
  • 45
  • 43
  • 42
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Magnetic properties of rocks associated with the New Cornelia porphyry copper deposit, Pima County, Arizona

May, Bruce Tipton, 1940- January 1968 (has links)
No description available.
112

'5'7Fe Moessbauer studies of Fe-Si based amorphous ferromagnetic ribbons and thin films

Aghamohammadzadeh, H. January 1998 (has links)
No description available.
113

MAE measurements and studies of magnetic domains by electron microscopy

Lo, C. C. H. January 1998 (has links)
No description available.
114

Oxime based manganese molecular magnets

Inglis, Ross January 2010 (has links)
The synthesis and characterisation of a large family of hexametallic [MnIII 6] Single-Molecule Magnets with general formula [MnIII 6O2(R-sao)6(X)2(L)4-6] (where sao2- = dianion of salicylaldoxime; R = H, Me, Et, Ph; X = O2CR' (R' = H, Me, Ph etc), Hal , O2PHPh or O2P(Ph)2; L = solvent) are presented. Deliberate structural distortions of the [Mn3O] trinuclear moieties within the complexes are used to tune the observed magnetic properties. These findings highlight a qualitative magnetostructural correlation whereby the type (anti- or ferromagentic) of each Mn2 pairwise magnetic exchange is dominated by the magnitude of each individual Mn-N-O-Mn torsion angle. To shed further light on this intriguing family of nanomagnets, a large family of the analogous “half” molecules has been synthesised and fully characterised. These trimetallic [MnIII 3] complexes can be divided into three categories with general formulae (type 1) [MnIII 3O(R-sao)3(X)(sol)3-4] (where R = H, Me, tBu; X = O2CR (R = H, Me, Ph etc); sol = py and / or H2O), (type 2) [MnIII 3O(R-sao)3(X)(sol)3-5] (where R = Me, Et, Ph, tBu; X = O2CR (R = H, Me, Ph etc); sol = MeOH, EtOH and / or H2O), and (type 3) [MnIII 3O(R-sao)3(sol)3](XO4) (where R = H, Et, Ph, Naphth; sol = py, MeOH, -pic, Et-py, tBu-py; X = Cl, Re). In the crystals the ferromagnetic triangles are involved in extensive inter-molecular H-bonding which is clearly manifested in the magnetic behaviour, producing exchange-biased SMMs. These interactions can be removed by ligand replacement to give “simpler” SMMs. The [MnIII 6] and [MnIII 3] molecular nanomagnets are then exploited as building blocks to construct supramolecular architectures by means of host-guest interactions and coordination driven self-assembly. A number of discrete and infinite architectures based on the molecular triangle [Mn3] and various pyridyl-type ligands were obtained and structurally and magnetically characterised.
115

Raman and NMR Investigation of Molecular Reorientation and Internal Rotation in Liquids

Yuan, Peng 12 1900 (has links)
Molecular rotational motions are known to influence both Raman scattering of light and nuclear spin relaxation. Therefore, the application of Raman bandshape analysis and NMR relaxation time measurements to probe molecular dynamics in liquids will provide us with a deeper understanding of the dynamical behavior and structure of molecules in the liquid phase. Presented here are (i) studies of molecular reorientation of acetonitrile in the neat liquid phase and in solution by Raman bandshape analysis and NMR relaxation; (ii) studies of reorientational dynamics and internal rotation in transition metal clusters by NMR relaxation.
116

Spin-density-wave effects in dilute Cr-Al and Cr-Re alloys

28 October 2008 (has links)
Ph.D. / A comprehensive experimental study of the effects of the spin-density-wave (SDW) on the physical properties of antiferromagnetic , doped with Mn and V, and Cr-Re alloys is reported. The purpose of the study is twofold: c c Al Cr − 1 (i) To gain insight in the anomalous behaviour of the magnetic phase diagram reported for the binary Cr-Al system. (ii) To investigate SDW effects on the anharmonic behaviour of the lattice vibrations of Cr alloys with a member of the transition metals of group-7 in the periodic table. The investigation entails the following measurements: thermal expansion in the temperature range 77 – 450 K for all the specimens, velocity of sound in the temperature range 4 – 300 K for the Cr-Al-V alloys, ultrasonic wave velocity for the Cr-Re alloys as a function of applied pressure (up to 0.242 GPa) at different temperatures and electrical resistivity in the temperature range 77 – 450 K for the Cr-Re alloys. Concentration-temperature magnetic phase diagrams of the (Mn, V) alloy systems were constructed from the measurements. Alloying with Mn, to increase the electron concentration, is observed to drive an incommensurate (I) SDW alloy towards a commensurate (C) SDW state. This results in a triple point, where the ISDW, CSDW and paramagnetic (P) phases coexist on the magnetic phase diagram. A hysteretic first-order ISDW-CSDW/CSDWISDW phase transition line is then observed on the phase diagram for Mn concentrations above the triple point concentration. Adding V, in order to decrease the electron concentration, to an ISDW alloy is found to have the opposite effect. It drives such a system deeper into the region of the ISDW c c Al Cr − 1 c c Al Cr − 1 phase. A CSDW alloy is, on the other hand, driven towards the triple point by addition of V, instead of Mn. c c Al Cr − 1 Theoretical analysis of the magnetic phase diagrams of the (Mn, V) systems confirms a previous suggestion that the Al impurity acts as an electron acceptor in the Cr matrix for c c Al Cr − 1 2 < c at.% Al, as opposed to an electron donor for at.% Al. 2 > c The high-pressure ultrasonic studies on the Cr-Re alloys were used to construct their pressure-temperature ( T p − ) magnetic phase diagrams. Applying hydrostatic pressure to a CSDW Cr-Re alloy induces a hysteretic first-order CSDW-ISDW phase transition at a certain critical pressure, resulting in a triple point on the phase diagram. An interesting aspect of the observations on the Cr-Re alloys is the suggestion of a new phase line, separating pressureinduced and temperature-induced ISDW phases, on the T p − T p − phase diagram. Acoustic-mode Grüneisen parameters, which quantify the lattice anharmonicity, were calculated for the Cr-Re alloys from the high-pressure ultrasonic measurements. The results indicate exceptionally large interactions between the SDW and the long-wavelength longitudinal phonons in Cr-Re alloys. These effects are particularly large in the vicinity of the Néel phase transition temperature. Interactions of the SDW with the shear mode phonons are on the other hand relatively much smaller. The work on the Cr-Re alloys is considered to finally complete studies of the lattice anharmonicity of Cr alloy systems with elements of all the important groups of the periodic table. It now paves the way for developing microscopic theories to explain the unique behaviour of the magneto-elasticity of dilute Cr alloys. / Prof. H.L. Alberts Dr. A.R.E. Prinsloo
117

An investigation of the structural and magnetic properties of Ho substituted BiFeO3

Ncube, Mehluli 18 September 2012 (has links)
The doping of BiFeO3 with lanthanide elements like Ho, with a radius smaller than Bi, is ideal to improve the ferroelectric and magnetic properties of BiFeO3, which in principle can cause structural distortions of the lattice that improve the electrical and magnetic properties. In this work, we report on the temperature dependence of the structural and magnetic properties of Ho substituted BiFeO3 (BHFO) samples, which have been investigated by X-ray diffraction (XRD) and Mössbauer spectroscopic techniques. The XRD and Mössbauer measurements were done at room temperature on the as-synthesized BHFO samples and after annealing the samples in Argon up to 1073 K. The resultant XRD patterns have shown that BHFO is of rhombohedral R3m space group, with a majority Bi25FeO90 phase and a minority Bi2Fe4O9 phase. These two phases are attributed to the local stoichometry fluctuations in BiFeO3 (BFO). A new phase was evident in the XRD spectra after annealing the sample between 673 – 873 K; this has been assigned to the octahedral B-site of Fe3O4. The Mössbauer spectra were characterized by broadened features and the magnetic hyperfine splitting patterns were indicative of magnetic ordering mostly probably screwed or slightly antiferromagnetic ordering. The spectra were fitted with two symmetric sextets (S1 & S2) which were present in all annealed samples, a symmetric sextet (S3) which was observable at annealing temperatures greater than 673 K, a Lorentzian doublet (D) and a single line (SL) which were present in all spectra. The extracted hyperfine parameters of sextet S1 are consistent with those of rhombohedral BiFeO3 and are characteristic of magnetically ordered Fe3+. At TA > 673 K, a third sextet S3 was assigned to the high symmetry cubic spinel phase. The paramagnetic doublet D was attributed to the Bi25FeO40 phase and the singlet line SL to the Bi2Fe4O9 phase which has been observed previously in the studies of BiFeO3 and other BiFeO3 doped systems. The isomer shift and quadrupole splitting values of the paramagnetic doublet D corresponds to an oxidation state of Fe3+, while the isomer shift of S1 remained fairly constant up to TA = 623 K then decreased gradually after the appearance of S3 indicating an increase of the s-electron density at the Fe nucleus. The quadrupole splitting of S2 showed no systematic change with annealing temperature, however at TA > 623 K this parameter changed dramatically to a negative value with a slightly larger magnetic field. The distribution of the isomer shift and the difference in the quadrupole splitting values and signs are due the variation in the angles between the principal axis of the electric field gradient (EFG) and the spin direction. The hyperfine fields of S1 and S2 remained fairly constant for all measured samples, however at TA > 623 K the hyperfine field of S3 showed a slight increase which could be due to Ho being substituted at the Fe site in BiFeO3. In addition, in-situ Mössbauer measurements at temperatures in the range 300 – 748 K were made on the BHFO samples. The room temperature spectrum showed similar features as observed on the annealing series of measurements. The hyperfine magnetic fields of the two sextet components (S1 and S2) decreased with increasing temperature and finally collapsed at T > 588 K. The hyperfine fields of both the S1 and S2 components decreased systematically with temperature to a field distribution just below the Néel temperature. From our measurements, we estimated the Néel temperature for BHFO to be in the range 598 – 617 K. The isomer shift for all spectral components showed a linear decrease with increasing temperature which closely followed the usual second order Doppler shift variation with temperature. The S1 and S2 spectral components present at room temperature disappeared just before the Néel temperature resulting in the area fraction of the paramagnetic doublet D dominating the spectrum. From the site populations, an average Debye temperature (θD) was estimated to be 240 ± 81 K for BHFO which is lower than the value of 340 ± 50 K cited for BiFeO3.
118

Magnetização e Magnetoresistência Gigante em Ligas Granulares CuNiFe / Magnetization and giant magnetoresistance in granular alloys CuNiFe.

Martins, Cezar Soares 22 September 2000 (has links)
Neste trabalho, estudamos as propriedades magnéticas e a magnetoresistência gigante (GMR) em fitas de Cu IND.80 Ni IND.20-xFe IND.x (x = 2,5 ; 5; 10; 17, 5; 20) produzidas por melt-spinning. As fitas foram estudadas como função da temperatura de tratamento térmico T IND.an 500°C, usando-se um magnetômetro SQUID. Uma grande variedade de estruturas granulares foram obtidas para diferentes razões de Ni/Fe e condições de tratamento térmico. Para Cu80 Ni10 Fe10, a magnetização não apresentou histerese mensurável para T 50K. Este comportamento é consistente com as curvas de susceptibilidade que indicam uma temperatura de bloqueio abaixo de 50K. Nesta temperatura, o maior valor da GMR(19%) foi obtido para as fitas tratadas a 400°C por duas horas. As curvas de magnetização foram comparadas a um modelo teórico que assume uma distribuição de momentos magnéticos. Para Cu80Ni15Fe5,a microestrutura e as propriedades magnéticas são muito sensíveis ao tratamento térmico. Para as ligas com composições 10; 15; 17,5% de Fe, a magnetização de saturação apresentou uma redução com o tratamento a 400°C. Esta redução foi explicada através da formação de partículas perto da região Invar. Um comportamento anômalo linear da amplitude da magnetoresistência foi observado e explicado pelo espalhamento dependente do spin, que acontece quando um elétron se move de uma partícula superparamagnética para uma partícula bloqueada termicamente. / In this work, we study the magnetic properties and giant magnetoresistance (GMR) in ribbons of Cu80 Ni20-xFex (x = 2.5, 5, 10, 17.5, 20) prepared by melt-spinning. The ribbons were studied as a function of annealing temperature Tan 500°C, using a SQUID magnetometer. A wide variety of granular structures é obtained for different Ni/ Fe ratios and annealing conditions. In Cu80 Ni10 Fe10 , the magnetization shows no static hysteresis for T 50K. This behaviour is consistent with the susceptibility curve which indicates a blocking temperature below 50K. At this temperature, the largest GMR value was obtained for the ribbons annealed at 400°C for two hours. The magnetization curves were compared with a theoretical model that takes into account the magnetic moment distribution. In Cu80 Ni15Fe5, the microstructure and magnetic properties are much more sensitive to annealing. For t he ribbons with 10, 15, 17.5 % Fe composition, the magnetization presented a reduction with annealing at 400°C. This redution may be explained in terms of particle formation near the Invar region. An anomalous linear behaviour of the MR was observed and can be explained in terms of spin-dependent scattering when an electron passes from a superparamagnetic particle to a thermally blocked particle.
119

Properties of magnetic layers fabricated by metal vapor vacuum arc (MEVVA) ion implantation into germanium. / CUHK electronic theses & dissertations collection

January 2001 (has links)
by Ranganathan Venugopal. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 150-165). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
120

Enhanced magnetoresistance in La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃ superlattices with ultra-sharp metal-insulator transition =: 金屬-絶緣轉變非常明顯的La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃超晶格薄膜的磁致電阻增强現象. / 金屬-絶緣轉變非常明顯的La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃超晶格薄膜的磁致電阻增强現象 / Enhanced magnetoresistance in La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃ superlattices with ultra-sharp metal-insulator transition =: Jin shu--jue yuan zhuan bian fei chang ming xian de La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃ chao jing ge bo mo de ci zhi dian zu zeng qiang xian xiang. / Jin shu--jue yuan zhuan bian fei chang ming xian de La₀.₆₇Ca₀.₃₃MnO₃/Pr₀.₆₇Ca₀.₃₃MnO₃ chao jing ge bo mo de ci zhi dian zu zeng qiang xian xiang

January 2002 (has links)
by Lo Wai Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references. / Text in English; abstracts in English and Chinese. / by Lo Wai Hung. / Acknowledgements --- p.1 / Abstract / 論文摘要 --- p.ii / Table of Contents --- p.iv / List of Figures --- p.vi / List of Tables --- p.viii / Chapter Chapter 1. --- Introduction / Chapter 1.1. --- Magnetoresistance --- p.1 -1 / Chapter 1.1.1. --- Giant magnetoresistance (GMR) --- p.1 -2 / Chapter 1.1.2. --- Colossal Magnetoresistace (CMR) --- p.1 -2 / Chapter 1.2. --- Doping effects in La1-xCaxMn03 --- p.1-4 / Chapter 1.3. --- Metal-Insulator transition in CMR materials --- p.1 -8 / Chapter 1.3.1. --- The sharpness in Metal-Insulator transition --- p.1 -9 / Chapter 1.3.2. --- Possible model to explain CMR in rare-earth manganites --- p.1-12 / Chapter 1.4. --- Low field magnetoresistance --- p.1-14 / Chapter 1.4.1.1. --- Single crystal and polycrystalline perovskite manganites --- p.1-14 / Chapter 1.4.1.2. --- Manganite trilayer junctions --- p.1-15 / Chapter 1.4.2. --- Possible mechanism of low field MR --- p.1-16 / Chapter 1.5. --- Our motivation --- p.1-17 / Chapter 1.5.1. --- Brief review of several manganite superlattices systems --- p.1-18 / Chapter 1.5.2. --- Scope of this thesis work --- p.1-20 / References --- p.1-21 / Chapter Chapter 2. --- Epitaxial growth of LCMO thin films / Chapter 2.1. --- Deposition techniques --- p.2-1 / Chapter 2.1.1. --- Induction --- p.2-1 / Chapter 2.1.2. --- Facing-target sputtering (FTS) --- p.2-1 / Chapter 2.1.3. --- Vacuum system --- p.2-3 / Chapter 2.2. --- Fabrication and characterization of LCMO and PCMO targets --- p.2-4 / Chapter 2.3. --- Epitaxial growth of LCMO thin films --- p.2-9 / Chapter 2.3.1. --- Substrate materials --- p.2-9 / Chapter 2.3.2 --- Deposition --- p.2-10 / Chapter 2.3.2.1. --- Sample preparation --- p.2-10 / Chapter 2.3.2.2. --- Deposition procedure --- p.2-10 / Chapter 2.3.2.3. --- Inter-target distance --- p.2-11 / Chapter 2.3.2.4. --- Deposition Rate --- p.2-15 / Chapter 2.4. --- Substrate temperature effect --- p.2-17 / Chapter 2.4.1. --- Crystal Structure --- p.2-17 / Chapter 2.4.2. --- Transport properties --- p.2-20 / Chapter 2.4.2.1. --- Sharpness of M-I transport properties --- p.2-24 / Chapter 2.4.2.2. --- Magnetoresistance of LCMO/NGO films --- p.2-27 / Chapter 2.5. --- Thickness of LCMO thin film --- p.2-28 / Chapter 2.5.1. --- Crystal Structure --- p.2-29 / Chapter 2.5.2. --- M-I transition properties --- p.2-31 / Chapter 2.5.2.1. --- Sharpness of M-I transport properties --- p.2-35 / Chapter 2.5.2.2. --- Magnetoresistance of LCMO/NGO films --- p.2-36 / Chapter 2.5.2.3. --- Surface Morphology --- p.2-38 / Chapter 2.6. --- Epitaxial growth of PCMO thin films --- p.2-40 / Chapter 2.7. --- Conclusion --- p.2-42 / References --- p.2-43 / Chapter Chapter 3. --- LCMO/PCMO superlattices --- p.3-1 / Chapter 3.1. --- Variation of the PCMO thickness in LCMO/PCMO superlattices --- p.3-2 / Chapter 3.1.1. --- Sample Preparation --- p.3-2 / Chapter 3.1.2. --- Structure characterization by XRD --- p.3-3 / Chapter 3.1.3. --- Transport properties --- p.3-10 / Chapter 3.1.3.1. --- Sharpness of M-I transport properties --- p.3-14 / Chapter 3.1.3.2. --- Magnetoresistance of LCMO/PCMO superlattices --- p.3-16 / Chapter 3.2. --- Variation of the number of LCMO/PCMO bilayer --- p.3-19 / Chapter 3.2.1. --- Sample Preparation --- p.3-19 / Chapter 3.2.2. --- Structure characterization by XRD --- p.3-21 / Chapter 3.2.3. --- Transport properties --- p.3-23 / Chapter 3.2.3.1. --- Sharpness of M-I transport properties --- p.3-27 / Chapter 3.2.3.2. --- Magnetoresistance of LCMO/PCMO superlattices --- p.3-28 / Chapter 3.3. --- Fine adjusting the thickness of PCMO around 10Ain LCMO/PCMO superlattices / Chapter 3.3.1. --- Sample Preparation --- p.3-31 / Chapter 3.3.2. --- Characterization ofLCMO/PCMO superlattices by XRD --- p.3-32 / Chapter 3.3.3. --- Transport properties --- p.3-35 / Chapter 3.3.3.1. --- Sharpness of M-I transport properties --- p.3-39 / Chapter 3.3.3.2. --- Magnetoresistance of LCMO/PCMO superlattices --- p.3-41 / Chapter 3.4. --- Conclusion --- p.3-43 / References --- p.3-44 / Chapter Chapter 4. --- Low-field magnetoresistance (LFMR) / Chapter 4.1. --- Low-field magnetoresistance --- p.4-1 / Chapter 4.2. --- Conclusion --- p.4-5 / References --- p.4-6 / Chapter Chapter 5. --- Structure characterization of LCMO/PCMO superlatticess by crater edge profiling --- p.5-1 / Chapter 5.1. --- Sample preparation --- p.5-2 / Chapter 5.2. --- Structure Characterization --- p.5-2 / Chapter 5.2.1. --- X-ray diffraction (XRD) --- p.5-2 / Chapter 5.2.2. --- The crater edge profiling --- p.5-5 / Chapter 5.2.2.1. --- SEM --- p.5-5 / Chapter 5.2.2.2. --- AES line scan --- p.5-10 / Chapter 5.3. --- Crater edge profiling of P1OO/STO --- p.5-12 / Chapter 5.4. --- Conclusion --- p.5-15 / References --- p.5-16 / Chapter Chapter 6. --- Conclusion --- p.6-1

Page generated in 0.1092 seconds