• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Signature Estimation Using Neural Networks

Bosack, Matthew James January 2012 (has links)
Ferrous objects in earth's magnetic field cause distortion in the surrounding ambient field. This distortion is a function of the object's material properties and geometry, and is known as the magnetic signature. As a precursor to first principle modeling of the phenomenon and a proof of concept, the goal of this research is to predict offboard magnetic signatures from on-board sensor data using a neural network. This allows magnetic signature analysis in applications where direct field measurements are inaccessible. Simulated magnetic environments are generated using MATLAB's Partial Differential Equation toolbox for a 2D geometry, specifically for a rectangular shell. The resulting data sets are used to train and validate the neural network, which is configured in two layers with ten neurons. Sensor data from within the shell is used as network inputs, and the off-board field values are used as targets. The neural network is trained using the Levenberg-Marquardt algorithm and the back propagation method by comparing the estimated off-board magnetic field intensity to the true value. This research also investigates sensitivity, scalability, and implementation issues of the neural network for signature estimation in a practical environment. / Electrical and Computer Engineering
2

Magnetic signature characterization of a fixed-wing vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV)

Hansen, Cody Robert Daniel 17 December 2018 (has links)
The use of magnetometers combined with unmanned aerial vehicles (UAVs) is an emerging market for commercial and military applications. This study presents the methodology used to magnetically characterize a novel fixed-wing vertical take-off and landing (VTOL) UAV. The most challenging aspect of integrating magnetometers on manned or unmanned aircraft is minimizing the amount of magnetic noise generated by the aircraft’s onboard components. As magnetometer technology has improved in recent years magnetometer payloads have decreased in size. As a result, there has been an increase in opportunities to employ small to medium UAV with magnetometer applications. However, in comparison to manned aviation, small UAVs have smaller distance scales between sources of interference and sensors. Therefore, more robust magnetic characterization techniques are required specifically for UAVs. This characterization determined the most suitable position for the magnetometer payload by evaluating the aircraft’s static-field magnetic signature. For each aircraft component, the permanent and induced magnetic dipole moment characteristics were determined experimentally. These dipole characteristics were used to build three dimensional magnetic models of the aircraft. By assembling the dipoles in 3D space, analytical and numerical static-field solutions were obtained using MATLAB computational and COMSOL finite element analysis frameworks. Finally, Tolles and Lawson aeromagnetic compensation coefficients were computed and compared to evaluate the maneuver noise for various payload locations. The magnetic models were used to study the sensitivity of the aircraft configuration and to simultaneously predict the effects at potential sensor locations. The study concluded by predicting that a wingtip location was the area of lowest magnetic interference. / Graduate
3

Análise da assinatura magnética resultante de faltas em sistemas elétricos via wavelets. / Electrical system fault based on the resulting magnetic signature by Wavelet.

Sevegnani, Francisco Xavier 21 August 2009 (has links)
Apresenta-se uma metodologia que tem como base a análise de campos magnéticos no monitoramento da qualidade da energia de sistemas elétricos. Em particular, são avaliados os aspectos referentes à detecção de faltas em sistemas elétricos. Diferente do processo de monitoração tradicional, cujos sensores precisam estar fisicamente conectados aos circuitos analisados, propõe-se estudar a viabilidade da utilização dos sinais provenientes da assinatura magnética resultante no exame do desempenho dos sistemas elétricos. Ressalta-se, assim, a característica não invasiva deste processo. Em uma primeira instância, simulações numéricas e medidas experimentais são usadas para estimar a validade deste método. Com base em valores das correntes de falta fase-terra, relacionados a configurações reais de sistemas de distribuição, provenientes de simulações numéricas e disponibilizadas na literatura, são calculados os campos magnéticos em regiões pré-selecionadas próximas às linhas. A seguir, aplicam-se os conceitos relacionados a wavelets no tratamento dos sinais resultantes. É nesta etapa que, por meio da decomposição da assinatura magnética correspondente, serão obtidos os dados necessários para se correlacionar os componentes dos sinais ao diagnóstico das faltas, nos sistemas elétricos. A Análise de múltirresolução é aplicada. Além destes resultados teóricos, aqueles provenientes de uma bancada experimental são examinados. Algumas configurações canônicas foram pré-selecionadas, visando estudar a eventual influência dos aspectos geométricos nos resultados relacionados à decomposição do sinal em análise. Embora métodos analíticos pudessem ser empregados na determinação da assinatura magnética resultante, os métodos numéricos, tais como o método dos elementos finitos, foram utilizados visando agilizar a obtenção de resultados teóricos a serem avaliados. Da mesma forma, aplicativos já disponibilizados comercialmente foram utilizados na decomposição dos sinais. Esta metodologia foi aplicada, também, para identificar faltas, aplicando-se a análise da variância para os diversos níveis do detalhe wavelet. A validação da metodologia foi feita pela comparação entre os resultados simulados e obtidos experimentalmente. / A methodology based on the analysis of magnetic fields for monitoring the quality of energy in electrical systems is presented herein. Aspects referring to fault detection in electrical systems in particular are evaluated. Contrary to the traditional monitoring process, in which sensors must be physically linked to the circuits under analysis, the results are presented from a feasibility study on the use of signals arising from the resulting magnetic signature by means of the electrical systems analysis. Thus the non-invasive characteristic of this process should be pointed out. First, numerical simulations and experimental measures were used to estimate the validity of this method. Based on values of the current of phase-earth fault related to actual features of the distribution systems and derived from numeric simulations found in the literature, the magnetic fields, in pre-established regions, were calculated. Following this, the concepts related to wavelets in the treatment of resulting signals were applied. It is in this phase that, by means of the decomposition of the corresponding magnetic signature, the data necessary to correlate the signal components for the diagnosis of faults in electrical systems were obtained. A Multiresolution Analysis (MRA) was applied. In addition to these theoretical results, the results from a laboratory workbench were also examined. Some canonical features were pre-selected, aiming to study the influence of geometric aspects on the results related to the signal decomposition analyzed. Although analytical methods could be employed to determine the resulting magnetic signature, numerical methods, such as the finite element method, were used to expedite obtaining the theoretical results to be analyzed. Likewise, commercial software was also used for the decomposition of signals. This methodology was validated by comparing the measured and simulated magnetic flux density. This methodology was also applied to identify and classify faults by means of the variance curve towards the wavelet detail.
4

Análise da assinatura magnética resultante de faltas em sistemas elétricos via wavelets. / Electrical system fault based on the resulting magnetic signature by Wavelet.

Francisco Xavier Sevegnani 21 August 2009 (has links)
Apresenta-se uma metodologia que tem como base a análise de campos magnéticos no monitoramento da qualidade da energia de sistemas elétricos. Em particular, são avaliados os aspectos referentes à detecção de faltas em sistemas elétricos. Diferente do processo de monitoração tradicional, cujos sensores precisam estar fisicamente conectados aos circuitos analisados, propõe-se estudar a viabilidade da utilização dos sinais provenientes da assinatura magnética resultante no exame do desempenho dos sistemas elétricos. Ressalta-se, assim, a característica não invasiva deste processo. Em uma primeira instância, simulações numéricas e medidas experimentais são usadas para estimar a validade deste método. Com base em valores das correntes de falta fase-terra, relacionados a configurações reais de sistemas de distribuição, provenientes de simulações numéricas e disponibilizadas na literatura, são calculados os campos magnéticos em regiões pré-selecionadas próximas às linhas. A seguir, aplicam-se os conceitos relacionados a wavelets no tratamento dos sinais resultantes. É nesta etapa que, por meio da decomposição da assinatura magnética correspondente, serão obtidos os dados necessários para se correlacionar os componentes dos sinais ao diagnóstico das faltas, nos sistemas elétricos. A Análise de múltirresolução é aplicada. Além destes resultados teóricos, aqueles provenientes de uma bancada experimental são examinados. Algumas configurações canônicas foram pré-selecionadas, visando estudar a eventual influência dos aspectos geométricos nos resultados relacionados à decomposição do sinal em análise. Embora métodos analíticos pudessem ser empregados na determinação da assinatura magnética resultante, os métodos numéricos, tais como o método dos elementos finitos, foram utilizados visando agilizar a obtenção de resultados teóricos a serem avaliados. Da mesma forma, aplicativos já disponibilizados comercialmente foram utilizados na decomposição dos sinais. Esta metodologia foi aplicada, também, para identificar faltas, aplicando-se a análise da variância para os diversos níveis do detalhe wavelet. A validação da metodologia foi feita pela comparação entre os resultados simulados e obtidos experimentalmente. / A methodology based on the analysis of magnetic fields for monitoring the quality of energy in electrical systems is presented herein. Aspects referring to fault detection in electrical systems in particular are evaluated. Contrary to the traditional monitoring process, in which sensors must be physically linked to the circuits under analysis, the results are presented from a feasibility study on the use of signals arising from the resulting magnetic signature by means of the electrical systems analysis. Thus the non-invasive characteristic of this process should be pointed out. First, numerical simulations and experimental measures were used to estimate the validity of this method. Based on values of the current of phase-earth fault related to actual features of the distribution systems and derived from numeric simulations found in the literature, the magnetic fields, in pre-established regions, were calculated. Following this, the concepts related to wavelets in the treatment of resulting signals were applied. It is in this phase that, by means of the decomposition of the corresponding magnetic signature, the data necessary to correlate the signal components for the diagnosis of faults in electrical systems were obtained. A Multiresolution Analysis (MRA) was applied. In addition to these theoretical results, the results from a laboratory workbench were also examined. Some canonical features were pre-selected, aiming to study the influence of geometric aspects on the results related to the signal decomposition analyzed. Although analytical methods could be employed to determine the resulting magnetic signature, numerical methods, such as the finite element method, were used to expedite obtaining the theoretical results to be analyzed. Likewise, commercial software was also used for the decomposition of signals. This methodology was validated by comparing the measured and simulated magnetic flux density. This methodology was also applied to identify and classify faults by means of the variance curve towards the wavelet detail.

Page generated in 0.042 seconds