• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 114
  • 75
  • 33
  • 10
  • 7
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 284
  • 284
  • 274
  • 98
  • 83
  • 76
  • 76
  • 76
  • 50
  • 41
  • 37
  • 36
  • 34
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Localisation of brain functions : stimuling brain activity and source reconstruction for classification

Noirhomme, Quentin 18 October 2006 (has links)
A key issue in understanding how the brain functions is the ability to correlate functional information with anatomical localisation. Functional information can be provided by a variety of techniques like positron emission tomography (PET), functional MRI (fMRI), electroencephalography (EEG), magnetoencephalography (MEG) or transcranial magnetic stimulation (TMS). All these methods provide different, but complementary, information about the functional areas of the brain. PET and fMRI provide spatially accurate picture of brain regions involved in a given task. TMS permits to infer the contribution of the stimulated brain area to the task under investigation. EEG and MEG, which reflects brain activity directly, have temporal accuracy of the order of a millisecond. TMS, EEG and MEG are offset by their low spatial resolution. In this thesis, we propose two methods to improve the spatial accuracy of method based on TMS and EEG. The first part of this thesis presents an automatic method to improve the localisation of TMS points. The method enables real-time visualisation and registration of TMS evoked responses and MRI. A MF digitiser is used to sample approximately 200 points on the subject's head following a specific digitisation pattern. Registration is obtained by minimising the RMS point to surface distance, computed efficiently using the Euclidean distance transform. Functional maps are created from TMS evoked responses projected onto the brain surface previously segmented from MRI. The second part presents the possibilities to set up a brain-computer interface (BCI) based on reconstructed sources of EEG activity and the parameters to adjust. Reconstructed sources could improve the EEG spatial accuracy as well as add biophysical information on the origin of the signal. Both informations could improve the BCI classification step. Eight BCIs are built to enable comparison between electrode-based and reconstructed source-based BCIs. Tests on detection of laterality of upcoming hand movement demonstrate the interest of reconstructed sources.
52

Brain Plasticity and Upper Limb Function After Stroke: Some Implications for Rehabilitation

Lindberg, Påvel January 2007 (has links)
Neuroimaging and neurophysiology techniques were used to study some aspects of cortical sensory and motor system reorganisation in patients in the chronic phase after stroke. Using Diffusion Tensor Imaging, we found that the degree of white matter integrity of the corticofugal tracts (CFT) was positively related to grip strength. Structural changes of the CFT were also associated with functional changes in the corticospinal pathways, measured using Transcranial Magnetic Stimulation. This suggests that structural and functional integrity of the CFT is essential for upper limb function after stroke. Using functional magnetic resonance imaging (fMRI), to measure brain activity during slow and fast passive hand movements, we found that velocity-dependent brain activity correlated positively with neural contribution to passive movement resistance in the hand in ipsilateral primary sensory (S1) and motor (M1) cortex in both patients and controls. This suggests a cortical involvement in the hyperactive reflex response of flexor muscles upon fast passive stretch. Effects of a four week passive-active movement training programme were evaluated in chronic stroke patients. The group improved in range of motion and upper limb function after the training. The patients also reported improvements in a variety of daily tasks requiring the use of the affected upper limb. Finally, we used fMRI to explore if brain activity during passive hand movement is related to time after stroke, and if such activity can be affected with intense training. In patients, reduced activity over time was found in supplementary motor area (SMA), contralateral M1 and prefrontal and parietal association areas along with ipsilateral cerebellum. After training, brain activity increased in SMA, ipsilateral S1 and intraparietal sulcus, and contralateral cerebellum in parallel with functional improvements of the upper limb. The findings suggest a use-dependent modification of cortical activation patterns in the affected hand after stroke.
53

Hemispheric Differences in Numerical Cognition: A Comparative Investigation of how Primates Process Numerosity

Gulledge, Jonathan Paul 26 May 2006 (has links)
Four experiments, using both humans and monkeys as participants, were conducted to investigate the similarities and differences in human and nonhuman primate numerical cognition. In Experiment 1 it was determined that both humans and monkeys display a SNARC effect, with similar symbolic distance effects for both species. In addition, both species were found to respond faster to congruent stimulus pairs. In Experiment 2 both species were found accurately to recognize quantitative stimuli when presented for durations of 150 msec in a divided visual field paradigm. Performance for humans and monkeys for numerals and dot-patterns was almost identical in terms of accuracy and response times. In Experiment 3 participants were required to make relative numerousness judgments in a divided visual field paradigm. Both species responded faster and more accurately to stimuli presented to the right visual field. Species differences appeared, with monkeys performing equally well on both trial types whereas the humans performed better on numeral trials than on dot trials. In Experiment 4 repetitive transcranial magnetic stimulation (rTMS) was combined with the divided visual field paradigm. Accuracy was significantly disrupted for both species when compared to a no stimulation condition. A facilitation effect was also evident with both species exhibiting significant decreases in response time for all trials. Right-handed participants took longer to respond to stimuli presented to the left visual field. These findings add to the body of knowledge regarding both the similarities and differences of how quantitative stimuli are processed by humans and monkeys.
54

Avvikande lateralisering av motortrösklar hos vuxna som stammar : En TMS-studie

Karlsson, Ragnhild, Madeleine, Sundberg January 2011 (has links)
Stamning är en komplex motorisk talstörning, vars neurologisk bakgrund fortfarande inte är klarlagd. En växande mängd studier ger dock stöd för att stamning kan vara orsakat av strukturella avvikelser i den vänstra hemisfären. En studie (Sommer et al., 2003) som använde transkraniell magnetstimulering (TMS) för att undersöka kortikal inhibition hos personer som stammar (PsS) fann som ett bi-fynd att den stammande gruppen hade signifikant högre motortrösklar (MT) för vänster hemisfärs handmotorarea, det vill säga att det krävdes starkare stimulering för att väcka en muskelrespons i den kontralaterala handen. Resultat har dock inte uppmärksammats av senare forskning, och behöver verifieras. Den aktuella studien syftade till att undersöka om PsS tenderar att ha förhöjda MT, samt om det finns avvikande hemisfärsskilnader i MT hos PsS. MT mättes från båda hemisfärernas handmotorareor hos 15 PsS och 15 matchade kontollförsökspersoner med flytande tal. Resultatet visade på signifikant avvikande lateralisering av MT (p = 0,005) hos PsS; tvärtemot gruppen med flytande tal visade den stammande gruppen tendens till lägst MT i höger hemisfär, med 6 av 15 stammande som hade starkare högersidig lateralisering än någon i kontrollgruppen. Samstämmigt med resultaten från Sommer et al. (2003) var MT för vänster hemisfär signifikant högre i den stammande gruppen jämfört med kontrollgruppen (p = 0,049). Däremot fanns ingen tendens till avvikande MT i höger hemisfär (p = 0,92). Den förhöjda vänstersidiga MT kan vara relaterad till strukturella avvikelser i vänster hemisfär hos PsS.
55

Changes in corticospinal excitability induced by neuromuscular electrical stimulation

Mang, Cameron Scott Unknown Date
No description available.
56

Investigating the neural organisation of response selection and response conflict during language production using functional magnetic resonance imaging and repetitive transcranial magnetic stimulation

Tremblay, Pascale. January 2008 (has links)
Motor response selection is the process by which an intention to act is transformed into an action; this multifaceted process occurs at the interface between cognitive and motor systems. Despite the importance of response selection, the nature and neural implementation of this process is still a subject of debate (Thompson-Schill et al, 1997; Botvinick et al., 2001; Rushworth et al., 2004; Nachev et al., 2007). While previous research has demonstrated that the selection of finger movements relies on a distributed network involving premotor and prefrontal areas, the specific contribution of these regions, however, remains unclear. It is also unclear if the selection of words engages similar processes as the selection of finger movements, that is, if response selection is a domain-general or a domain-specific process. In order to address these issues, a set of four complementary studies using functional magnetic resonance imaging (fMRI) and repetitive transcranial magnetic stimulation (rTMS) was developed in which different factors affecting response selection were examined: selection mode, response type (words vs. oral movements), attention and response competition (conflict). / The results of these studies provide new insights into the neural architecture of response selection by uncovering the respective contribution of premotor areas (pre-SMA and PMA) and prefrontal areas (DLPFC and IFG). A preliminary two-stage model of response selection is proposed, in which the PMA is generating a set of response alternatives from which the pre-SMA performs selection using one of two different mechanisms (response facilitation and response inhibition). In general, these findings do not support the hypothesis of a medio-lateral gradient of control (Goldberg, 1985) but confirm the fundamental role of the lateral (PMA) and medial (pre-SMA) premotor areas in the process of selecting motor responses. / Importantly, the results also demonstrate that selection is a domain-general (response-independent) process. Uncovering the general, multifaceted nature of brain mechanisms is essential to reveal the basic units of control in the central nervous system; this knowledge is fundamental to broaden current understanding of the basic brain operations that are used to produce language. Theoretical and clinical implications of these findings are discussed.
57

The Effects of Neuromuscular Electrical Stimulation of the Submental Muscle Group on the Excitability of Corticobulbar Projections

Doeltgen, Sebastian Heinrich January 2009 (has links)
Neuromuscular electrical stimulation (NMES) has become an increasingly popular rehabilitative treatment approach for swallowing disorders (dysphagia). However, its precise effects on swallowing biomechanics and measures of swallowing neurophysiology are unclear. Clearly defined NMES treatment protocols that have been corroborated by thorough empirical research are lacking. The primary objective of this research programme was therefore to establish optimal NMES treatment parameters for the anterior hyo-mandibular (submental) musculature, a muscle group that is critically involved in the oral and pharyngeal phases of swallowing. Based on previous research, the primary hypothesis was that various NMES treatment protocols would have differential effects of either enhancing or inhibiting the excitability of corticobulbar projections to this muscle group. The research paradigm used to test this hypothesis was an evaluation of MEP amplitude and onset latency, recorded in the functional context of volitional contraction of the submental musculature (VC) and contraction of this muscle group during the pharyngeal phase of volitional swallowing (VPS, volitional pharyngeal swallow). Outcome measures were recorded before and at several time points after each NMES treatment trial. This methodology is similar to, but improved upon, research paradigms previously reported. Changes in corticobulbar excitability in response to various NMES treatment protocols were recorded in a series of experiments. Ten healthy research participants were recruited into a study that evaluated the effects of event-related NMES, whereas 15 healthy research participants were enrolled in a study that investigated the effects of non-event-related NMES. In a third cohort of 35 healthy research participants, task-dependent differences in corticobulbar excitability were evaluated during three conditions of submental muscle contraction: VC, VPS and submental muscle contraction during the pharyngeal phase of reflexive swallowing (RPS, reflexive pharyngeal swallowing). Event-related NMES induced frequency-depended changes in corticobulbar excitability. NMES administered at 80 Hz facilitated MEP amplitude, whereas NMES at 5 Hz and 20 Hz inhibited MEP amplitude. No changes were observed after NMES at 40 Hz. Maximal excitatory or inhibitory changes occurred 60 min post-treatment. Changes in MEP amplitude in response to event-related NMES were only observed when MEPs were recorded during the VC condition, whereas MEPs recorded during the VPS condition remained unaffected. Non-event-related NMES did not affect MEP amplitude in either of the muscle contraction conditions. Similarly, MEP onset latencies remained unchanged across all comparisons. MEPs were detected most consistently during the VC contraction condition. They were less frequently detected and were smaller in amplitude for the VPS condition and they were infrequently detected during pre-activation by RPS. The documented results indicate that event-related NMES has a more substantial impact on MEP amplitude than non-event-related NMES, producing excitatory and inhibitory effects. Comparison of MEPs recorded during VC, VPS and RPS suggests that different neural networks may govern the motor control of submental muscle activation during these tasks. This research programme is the first to investigate the effects of various NMES treatment protocols on the excitability of submental corticobulbar projections. It provides important new information for the use of NMES in clinical rehabilitation practices and our understanding of the neural networks governing swallowing motor control.
58

Modulation of swallowing behaviour by olfactory and gustatory stimulation

Abdul Wahab, Norsila January 2012 (has links)
Swallowing impairment or dysphagia can be a consequence of several neurological and anatomical disorders such as stroke, Parkinson’s diseases, and head and neck cancer. Management of patients with dysphagia often involves diet modification, sensory stimulation, and exercise programme with the primary goal being safe swallowing to maintain nutrition. The aim of this project was to evaluate the effects of lemon odour and tastant on swallowing behaviour in healthy young adults. Specifically, the neural excitability and biomechanical characteristics of swallowing were measured in two studies. Neural excitability was evaluated by measuring motor-evoked potentials (MEPs) from the submental muscles which were evoked by transcranial magnetic stimulation (TMS) of the motor cortex. Biomechanical characteristics were evaluated through measures of submental muscle contraction, pressure changes in the oral cavity and pharynx, and the dynamics of the upper oesophageal sphincter (UES). Two groups of volunteers (16 in each group) participated in two separate studies. In the MEP study, 25% and 100% concentrations of lemon concentrate were presented separately as olfactory and gustatory stimuli. The four stimuli were randomly presented in four separate sessions. The olfactory stimulus was nebulized and presented via nasal cannula. Filter paper strips impregnated with the lemon concentrate placed on the tongue served as the gustatory stimulus. Tap water was used as control. TMS-evoked MEPs were measured at baseline, during control condition, during stimulation, immediately poststimulation, and at 30-, 60-, and 90-min poststimulation. Experiments were repeated using the combination of odour and tastant concentration that most significantly influenced the MEP. The biomechanical study used (a) surface electromyography (sEMG) to record contraction of the submental muscles, (b) lingual array with pressure transducers to record glossopalatal pressures, and (c) pharyngeal manometry to record pressures in the pharynx and the UES. Similar methods of presenting the stimuli were used to randomly present the 25% and 100% concentrations of lemon odour and tastant. All data were recorded concurrently during stimulation. The concentration of odour and tastant that produced the largest submental sEMG amplitude was selected for presentation of combined stimulation. Data were then recorded during combined stimulation and at 30-, 60-, and 90-min poststimulation. Results from the MEP study showed increased MEP amplitude at 30-, 60-, and 90-min poststimulation during swallowing compared to baseline, but only for the combined stimulation. Poststimulation results from the biomechanical study showed decreased middle glossopalatal pressure at 30 min and decreased anterior and middle glossopalatal contact duration at 60 min. No poststimulation changes were found in sEMG and pharyngeal manometry measures. During combined odour and tastant stimulation, there were increased pressure and contact duration at the anterior glossopalatal contact and decreased hypopharyngeal pressure. Generally, these changes correspond to increased efficiency of swallowing. In conclusion, these are the first studies to have measured the effects of flavour on neural excitability and biomechanics of swallowing and the first to have shown changes in MEP and several biomechanical characteristics of swallowing following flavour stimulation. These changes were present poststimulation, suggesting mechanisms of neural plasticity that may underlie potential value in the rehabilitation of patients with dysphagia.
59

Transkranijinės magnetinės stimuliacijos įtaka galvos smegenų bioelektriniam aktyvumui / The effect of transcranial magnetic stimulation on brain bioelectrical activity

Valiulis, Vladas 25 September 2014 (has links)
Transkranijinė magnetinė stimuliacija (TMS) – tai modernus neinvazinis vaistams rezistentiškų psichiatrinių sutrikimų gydymo būdas. Fiziologiniai TMS tyrimai pasižymi įvairiais, dažnai prieštaringais rezultatais, daugeliu atvejų didžiausias dėmesys skiriamas betarpiškiems poveikiams po vienos TMS procedūros, bet ne po pilno terapinio kurso. Manoma, kad rezultatų įvairovę TMS praktikoje įtakoja skirtingi stimuliacijos parametrai ir netikslumai parenkant stimuliuojamą zoną smegenyse. Nors TMS terapija dažnai traktuojama kaip švelnesnė alternatyva elektros impulsų terapijai (EIT), palyginamųjų fiziologinių šių metodikų tyrimų labai trūksta. Darbo tikslas buvo įvertinti TMS terapijos kurso poveikį bioelektriniam galvos smegenų aktyvumui ir palyginti jį su EIT terapijos poveikiu. Buvo tirta aukšto ir žemo dažnių (10 Hz ir 1 Hz) TMS terapijos įtaka EEG dažnių galios spektrui bei sukeltiniam klausos potencialui P300, naudojant standartinį ir neuronavigacinį taikinio pozicionavimą. TMS sukelti EEG pokyčiai palyginti su EIT terapijos sukeltais EEG pokyčiais, išmatuota TMS terapijos sąlygotų pokyčių dinamika kelių mėnesių bėgyje. Rezultatai parodė, kad TMS terapijos pasekoje smegenyse ryškiausiai padidėja delta dažnio galia. Naudojant standartinį pozicionavimą 10 Hz TMS sukėlė įvairesnius ir intensyvesnius EEG galios spektro pokyčius nei 1 Hz TMS. Pritaikius neuronavigacinę sistemą 10 Hz TMS atveju sumažėjo teta ir alfa dažnių galios pokyčiai. Praėjus keliems mėnesiams nuo TMS... [toliau žr. visą tekstą] / Transcranial magnetic stimulation (TMS) is a modern non invasive method of drug resistant psychiatric disorder treatment. TMS physiology research is hindered by variable, often controversial results. In most studies main attention is being focused on immediate effects after single TMS procedure rather than the influence of a complete therapy course. It is considered that variability of results in TMS practice is caused by different stimulation parameters and imprecision of stimulated area placement in the brain. Although TMS therapy is often viewed as a milder alternative to electroconvulsive therapy (ECT), comparative physiological studies of these two methods are very rare. The aim of this study was to evaluate the effect of rTMS therapy course on bioelectrical brain activity and compare it to an ECT effect. Research included the effect of high and low frequency (10 Hz and 1 Hz) TMS on EEG band power spectrum and auditory evoked potential P300, using both standard and neuronavigated target positioning. TMS evoked EEG changes were also compared to the changes of ECT. Change dynamics after several months of TMS therapy were also measured. Results showed that after TMS therapy the most notable change in the brain occurs in the form of delta power increase. When using standard positioning 10 Hz TMS evokes more diverse and intense EEG band power spectrum changes than the 1 Hz TMS. Application of neuronavigation system decreases theta and alpha band power changes in 10 Hz TMS... [to full text]
60

The effect of transcranial magnetic stimulation on brain bioelectrical activity / Transkranijinės magnetinės stimuliacijos įtaka galvos smegenų bioelektriniam aktyvumui

Valiulis, Vladas 25 September 2014 (has links)
Transcranial magnetic stimulation (TMS) is a modern non invasive method of drug resistant psychiatric disorder treatment. TMS physiology research is hindered by variable, often controversial results. In most studies main attention is being focused on immediate effects after single TMS procedure rather than the influence of a complete therapy course. It is considered that variability of results in TMS practice is caused by different stimulation parameters and imprecision of stimulated area placement in the brain. Although TMS therapy is often viewed as a milder alternative to electroconvulsive therapy (ECT), comparative physiological studies of these two methods are very rare. The aim of this study was to evaluate the effect of rTMS therapy course on bioelectrical brain activity and compare it to an ECT effect. Research included the effect of high and low frequency (10 Hz and 1 Hz) TMS on EEG band power spectrum and auditory evoked potential P300, using both standard and neuronavigated target positioning. TMS evoked EEG changes were also compared to the changes of ECT. Change dynamics after several months of TMS therapy were also measured. Results showed that after TMS therapy the most notable change in the brain occurs in the form of delta power increase. When using standard positioning 10 Hz TMS evokes more diverse and intense EEG band power spectrum changes than the 1 Hz TMS. Application of neuronavigation system decreases theta and alpha band power changes in 10 Hz TMS... [to full text] / Transkranijinė magnetinė stimuliacija (TMS) – tai modernus neinvazinis vaistams rezistentiškų psichiatrinių sutrikimų gydymo būdas. Fiziologiniai TMS tyrimai pasižymi įvairiais, dažnai prieštaringais rezultatais, daugeliu atvejų didžiausias dėmesys skiriamas betarpiškiems poveikiams po vienos TMS procedūros, bet ne po pilno terapinio kurso. Manoma, kad rezultatų įvairovę TMS praktikoje įtakoja skirtingi stimuliacijos parametrai ir netikslumai parenkant stimuliuojamą zoną smegenyse. Nors TMS terapija dažnai traktuojama kaip švelnesnė alternatyva elektros impulsų terapijai (EIT), palyginamųjų fiziologinių šių metodikų tyrimų labai trūksta. Darbo tikslas buvo įvertinti TMS terapijos kurso poveikį bioelektriniam galvos smegenų aktyvumui ir palyginti jį su EIT terapijos poveikiu. Buvo tirta aukšto ir žemo dažnių (10 Hz ir 1 Hz) TMS terapijos įtaka EEG dažnių galios spektrui bei sukeltiniam klausos potencialui P300, naudojant standartinį ir neuronavigacinį taikinio pozicionavimą. TMS sukelti EEG pokyčiai palyginti su EIT terapijos sukeltais EEG pokyčiais, išmatuota TMS terapijos sąlygotų pokyčių dinamika kelių mėnesių bėgyje. Rezultatai parodė, kad TMS terapijos pasekoje smegenyse ryškiausiai padidėja delta dažnio galia. Naudojant standartinį pozicionavimą 10 Hz TMS sukėlė įvairesnius ir intensyvesnius EEG galios spektro pokyčius nei 1 Hz TMS. Pritaikius neuronavigacinę sistemą 10 Hz TMS atveju sumažėjo teta ir alfa dažnių galios pokyčiai. Praėjus keliems mėnesiams nuo TMS... [toliau žr. visą tekstą]

Page generated in 0.0987 seconds