• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 14
  • 14
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MAGNETIC PARTICLE SEPARATORS AND INTEGRATED BIOFILTERS FOR MAGNETIC BEAD-BASED BIOCHEMICAL DETECTION SYSTEM

CHOI, JIN-WOO 11 October 2001 (has links)
No description available.
2

A BIOPARTICLE SEPARATION TECHNIQUE THROUGH MICROCHANNELS USING SEQUENTIAL PRESSURE PULSES

JAIN, ALOK 02 July 2004 (has links)
No description available.
3

A DISPOSABLE POLYMER LAB-ON-A-CHIP WITH MICRO/NANO BIOSENSOR FOR MAGNETIC NANO BEAD-BASED IMMUNOASSAY

DO, JAEPHIL January 2006 (has links)
No description available.
4

MEMS PROTOTYPICAL SYSTEM INTEGRATION AND PACKAGING FOR A GENERIC MICROFLUIDIC SYSTEM

DHARMATILLEKE, SAMAN MANGALA 11 October 2001 (has links)
No description available.
5

Magnetic DNA detection sensor for point-of-care diagnostics

Chaychian, Sara January 2014 (has links)
This thesis focuses on inductive base sensor design at MHz range frequency. The background theory, design, experiments and results for a new magnetic particles sensor is presented. A new magnetic sensor based on a planar coil was investigated for DNA pathogen detection. Change in inductance of the planar coil due to the presence of magnetic particles with varying mass was measured. The experimental set-up consisted of different sized planar coil with associated electronics for inductance measurements. The best sensor performance was accomplished using two different inductors while oscillating at frequencies 2.4MHz using 9.5μH inductor and 7.2MHz with 85μH inductor. The sensor has very large signal to noise ratio (580×103), while the average amount of frequency drift was 0.58. This sensor was tested with various types of magnetic particles. In addition, iron-oxide nanoparticles were synthesized through water in oil microemulsion method and with an average size of 25nm. The best sensitivity achieved for detection of 50μg iron-oxide particles was with the bead size of 10nm. 81Hz frequency shift was attained in regard to that amount of particles. This research shows that increasing the resonance frequency to 7.2MHz can cause the larger output signal difference (frequency shift) in the presence of magnetic particles; however, the sensor stability is the most important factor for determining the detection resolution and sensitivity. The sensitivity is better if the sensor can detect smaller amount of magnetic sample. The results of this research demonstrate that while the sample consists of smaller size particles, the sensor can detect the lower amount of sample. This is due to the heating effect of nanoparticles. On the other hand the sample distance from the sensor has a major impact on the sensitivity too; the shorter the distance, the higher the sensitivity. This technique can potentially be extended to detect several different types of bacterial pathogens and can be modified for multiplex quantitative detection. This sensing technique will be incorporated into a handheld, disposable microfluidic chip for point-of-care diagnostics for sexually transmitted diseases.
6

Magnetic bead-based DNA extraction and purification microfluidic chip

Azimi, Sayyed Mohamad January 2010 (has links)
A magnetic bead-based DNA extraction and purification device has been designed to be used for extraction of the target DNA molecules from whole blood sample. Mixing and separation steps are performed using functionalised superparamagnetic beads suspended in the cell lysis buffer in a circular chamber that is sandwiched between two electromagnets. Non-uniform nature of the magnetic field causes temporal and spatial distribution of the beads within the chamber. This process efficiently mixes the lysis buffer and whole blood in order to extract DNA from target cells. Functionalized surface of the magnetic beads then attract the exposed DNA molecules. Finally, DNA-attached magnetic beads are attracted to the bottom of the chamber by activating the bottom electrode. DNA molecules are extracted from the magnetic beads by washing and re-suspension processes. The numerical simulation approach has been adopted in order to design the magnetic field source. The performance of the magnetic field source has been investigated against different physical and geometrical parameters and optimised dimensions are obtained with two different magnetic field sources; integrated internal source and external source. A new magnetic field pattern has been introduced in order to efficiently control the bulk of magnetic beads inside the mixing chamber by dynamic shifting of magnetic field regions from the centre of the coils to the outer edge of the coils and vice versa. A Matlab code has been developed to simulate beads trajectories inside the designed extraction chip in order to investigate the efficiency of the magnetic mixing. A preliminary target molecule capturing simulation has also been performed using the simulated bead trajectories to evaluate the DNA-capturing efficiency of the designed extraction chip. The performance of the designed extraction chip has been tested by conducting a series of biological experiments. Different magnetic bead-based extraction kits have been used in a series of preliminary experiments in order to extract a more automation friendly extraction protocol. The efficiency of the designed device has been evaluated using the spiked bacterial DNA and non-pathogenic bacterial cell cultures (B. subtilis, Gram positive bacteria and E. coli, Gram negative bacteria) into the blood sample. Excellent DNA yields and recovery rates are obtained with the designed extraction chip through a simple and fast extraction protocol.
7

On-chip Cell Separator using Magnetic Bead-based Enrichment and Depletion of Various Cell Surface Markers

Estes, Matthew D. 27 July 2009 (has links)
No description available.
8

Multiplexed microfluidic sensor for the cell, cell secretome, and particulate matter detection

Liu, Fan January 2017 (has links)
No description available.
9

Particle interactions in a magnetophoretic system

Oduwole, Olayinka January 2016 (has links)
The continuous flow separation of magnetic particles from a mixture of particles could improve the performance of magnetic bead based assays but the formation of agglomerates limit the separation efficiency. Bead agglomerates are formed as a result of magnetic binding forces while the hydrodynamic fluid environment strongly influences their movement. The ability to predict the interaction between nearby beads will help to determine a threshold separation distance which will be recommended for use when obtaining measurement within a magnetic bead assay for a specified time interval. The introductory part of this thesis explored the development of a two dimensional numerical model in Matlab which predicts the trajectory pattern as well as magnetic induced velocities between a pair of super-paramagnetic beads suspended in water within a uniform field. The movement of a bead pair interacting due to both magnetic and hydrodynamic forces within a magnetophoretic system was recorded using an optical system; the beads' movements were compared with the simulated trajectories and gave a good agreement. The model was used to predict the shortest agglomeration time for a given separation distance which is of practical benefit to users of bead based assays. The concluding part of this thesis expanded the simulation into a three dimensional model to predict the interactions among three super-paramagnetic beads within a magnetophoretic system. In order to determine the height of the magnetic beads, a Huygens-Fresnel model was implemented in Matlab which was compared with off-focused diffracted images of the beads viewed under an optical system. A good comparison was obtained by comparing the simulated three-dimensional trajectories with experimental data.
10

CD31(-) HipOps - A Highly Osteogenic Cell Population From Mouse Bone Marrow

McKenzie, Kristen Penny 04 December 2012 (has links)
Multipotent mesenchymal stem cells (MSCs), found in many adult tissues, may be useful for regenerative medicine applications. Their identification and purification have been difficult due to their low frequency and lack of unambiguous markers. Using a magnetic micro-beads negative selection technique to remove contaminating hematopoietic cells from mouse bone marrow stromal cells (BMSCs), our lab recently isolated a highly purified osteoprogenitor (HipOp) population that was also enriched for other mesenchymal precursors, including MSCs (Itoh and Aubin, 2009). To further enhance enrichment, we positively selected BMSCs and HipOps for CD73, a putative MSC marker, which resulted in no significant additional enrichment for osteoprogenitors when the population was tested in vitro. However, we also found that HipOps were enriched in vascular endothelial cells, and that removing these cells by further negative selection with CD31/PECAM resulted in a CD31(-) HipOp population with higher osteogenic capacity than HipOps in vitro and in vivo.

Page generated in 0.0597 seconds