Spelling suggestions: "subject:"cagnetic potential"" "subject:"cmagnetic potential""
1 |
Application of translational addition theorems to the study of the magnetization of systems of ferromagnetic spheresAnthonys, Gehan 26 August 2014 (has links)
The main objective of this research is the study of the magnetization of ferromagnetic spheres in the presence of external magnetic fields. The exact analytical solutions derived in this thesis are benchmark solutions, valuable in testing the correctness and accuracy of various approximate models and numerical methods.
The total scalar magnetic potential outside the spheres, related to the magnetic field intensity, is obtained by the superposition of the potentials due to all spheres and the potential corresponding to the external field. The translational addition theorems for scalar Laplacian functions are used to solve boundary value by imposing exact boundary conditions.
The scalar magnetic potential inside each sphere, related to the magnetic flux density, also satisfies the Laplace equation, which is solved by imposing the boundary conditions known from the solution of the outside field. Finally, the expressions derived are used to generate numerical results of controllable accuracy for field quantities.
|
2 |
Confirmação matemática do efeito Aharonov-Bohm no modelo sem interação com a fronteira do solenóideRomano, Renan Gambale 30 May 2016 (has links)
Submitted by Caroline Periotto (carol@ufscar.br) on 2016-09-19T19:38:47Z
No. of bitstreams: 1
TeseRGR.pdf: 1035512 bytes, checksum: c73e48ed8a5af9eee7500d120e722d82 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-20T18:09:05Z (GMT) No. of bitstreams: 1
TeseRGR.pdf: 1035512 bytes, checksum: c73e48ed8a5af9eee7500d120e722d82 (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-20T18:09:14Z (GMT) No. of bitstreams: 1
TeseRGR.pdf: 1035512 bytes, checksum: c73e48ed8a5af9eee7500d120e722d82 (MD5) / Made available in DSpace on 2016-09-20T18:09:21Z (GMT). No. of bitstreams: 1
TeseRGR.pdf: 1035512 bytes, checksum: c73e48ed8a5af9eee7500d120e722d82 (MD5)
Previous issue date: 2016-05-30 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / We study the Aharonov-Bohm effect model by adding a scalar potential in the initial Hamiltonian. Using known techniques of quantum confinement, we show that under certain conditions of divergence on this potential, the family of self-adjoint extensions is reduced to a single operator, which would then be the Schrödinger operator for this situation. The lack of boundary conditions to define this operator is interpreted as no particle interaction with the boundary of the solenoid. We checked the possible manifestation of the Aharonov-Bohm effect in this model without interaction with the solenoid border by studying the dependence of the first eigenvalue associated with the Schrödinger operator with respect to a parameter directly related to the magnetic flux by the solenoid. We have shown that this dependence is non-trivial and periodic, which strictly confirms the Aharonov-Bohm effect for this situation. We also study some particular cases whose explicit solution can be achieved, the solenoid with zero radius in a limited and unlimited region of the plane. / Estudamos o modelo de efeito Aharonov-Bohm adicionando um potencial escalar no Hamiltoniano inicial. Usando técnicas conhecidas de confinamento quântico, demonstramos que, sob certas condições de divergência sobre este potencial, a família das extensões autoadjuntas se reduz a um único operador, o qual seria então o operador de Schrödinger para esta situação. A falta de condições de fronteira para a definição deste operador é interpretada como não interação da partícula com a fronteira do solenoide. Verificamos a possível manifestação do efeito de Aharonov-Bohm neste modelo sem contato com a fronteira do solenóide estudando a dependência do primeiro autovalor associado ao operador de Schrödinger com relação a um parâmetro diretamente relacionado ao fluxo magnético pelo solenóide. Demonstramos que esta dependência é não trivial e periódica, o que confirma rigorosamente o efeito de Aharonov-Bohm para este modelo. Estudamos também alguns caso particulares cuja resolução explícita pode ser obtida, como o solenóide com raio nulo numa região limitada e ilimitada do plano. / FAPESP: 2012/21480-8
|
Page generated in 0.0764 seconds