• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 7
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Magnetic vortex dynamics nanostructures / Dynamique de vortex magnétique dans une nanostructure

Pigeau, Benjamin 17 December 2012 (has links)
Cette thèse à pour objet l'étude expérimentale de la dynamiquede l'aimantation de disques de taille sub-micronique fait dematériau ferromagnétiques à faible amortissement . Pour cela,nous avons utilisé une technique spectroscopique extremementsensible qui sera préalablement présentée: la résonanceferromagnétique détéctée mécaniquement. Une premièrepartie est consacrée à la mesure des modes propres dans des disquesde NiMnSb dans leur état rémanent: le vortex. L'influence d'unchamp magnétique, aplliqué perpendiculairement, sur les ondes despin du vortex est détaillé. L'accent est ensuite mis surl'interaction du coeur de vortex avec ces ondes de spin, qui mèneà son retournement dynamique. Un cadre théorique de l'étatvortex est présenté, permettant de modéliser les mesuresexpérimentales. Dans une deuxième partie, le problème de ladynamique collective de plusieurs disques de FeV dont l'aimantation estsaturée perpendiculairement est étudié. La mesure des modescouplés par l'intéraction dipolaire dynamique y est présentée,associée à une modélisation théorique qui expliquequantitativement les résultats observés. / This thesis is aimed at studying experimentally the magnetisationdynamics of discs in the sub-micron range made of low dampingferromagnetic materials. For this purpose, an extremely sensitivetechnique has been used: the ferromagnetic resonance force microscopy. A firstpart is devoted to the measurement of the eigenmodes of NiMnSb discstaken in their remanent state: a vortex. The influence of aperpendicular magnetic field on the spin wave modes in the vortex state willbe detailled. Then, the coupling mechanism between the vortex core andthese spin wave, eventually leading to its dynamical reversal, ishighlighted. A theoretical framework of the vortex state is presented,allowing to model the experimental observations. In a second part,the problem of the collective magnetisation dynamics in several FeVdiscs is addressed. Measurements of the collective modes coupled bythe dynamical dipolar interaction are presented, associated with atheoretical modelisation which explain quantitatively the experimentalresults.
12

Ultrasensitive Measurements of Magnetism in Carbon-based Materials

Scozzaro, Nicolas Joseph January 2016 (has links)
No description available.
13

High Sensitivity Electron Spin Resonance by Magnetic Resonance Force Microscopy at Low Temperature

Fong, Kin Chung 10 December 2008 (has links)
No description available.
14

Synchronization of spin trasnsfer nano-oscillators / Synchronisation de nano-oscillateurs à transfert de spin

Hamadeh, Abbass 03 October 2014 (has links)
Les nano-Oscillateurs à transfert de spin (STNOs) sont des dispositifs capables d'émettre une onde hyperfréquence lorsqu'ils sont pompés par un courant polarisé grâce au couple de transfert de spin. Bien qu'ils offrent de nombreux avantages (agilité spectrale, intégrabilité, etc.) pour les applications, leur puissance d'émission et leur pureté spectrale sont en général faibles. Une stratégie pour améliorer ces propriétés est de synchroniser plusieurs oscillateurs entre eux. Une première étape est de comprendre la synchronisation d'un STNO unique à une source externe. Pour cela, nous avons étudié une vanne de spin Cu60|NiFe15|Cu10|NiFe4| Au25 (épaisseurs en nm) de section circulaire de 200 nm. Dans l'état saturé perpendiculaire (champ appliqué > 0.8 T), nous avons déterminé la nature du mode qui auto-Oscille et son couplage à une source externe grâce à un microscope de force par résonance magnétique (MRFM). Seul un champ micro-Onde uniforme permet de synchroniser le mode oscillant de la couche fine car il possède la bonne symétrie spatiale, au contraire du courant micro-Onde traversant l'échantillon. Ce même échantillon a ensuite été étudié sous faible champ perpendiculaire, les deux couches magnétiques étant alors dans l'état vortex. Dans ce cas, il est possible d'exciter un mode de grande cohérence (F/ ∆F >15000) avec une largeur de raie inférieure à 100 kHz. En analysant le contenu harmonique du spectre, nous avons déterminé que le couplage non-Linéaire amplitude-Phase du mode excité est quasi nul, ce qui explique la grande pureté spectrale observée, et qu'en parallèle, la fréquence d'oscillation reste ajustable sur une grande gamme grâce au champ d'Oersted créé par le courant injecté. De plus, la synchronisation de ce mode à une source de champ micro-Onde est très robuste, la largeur de raie mesurée diminuant de plus de cinq ordres de grandeur par rapport au régime autonome. Nous concluons de cette étude que le couplage magnéto-Dipolaire entre STNOs à base de vortex est très prometteur pour obtenir une synchronisation mutuelle, le champ dipolaire rayonné par un STNO sur ses voisins jouant alors le rôle de la source micro-Onde. Nous sommes donc passés à l'étape suivante, à savoir la mesure expérimentale de deux STNOs similaires séparés latéralement de 100 nm. En jouant sur les différentes configurations de polarités des vortex, nous avons réussi à observer la synchronisation mutuelle de ces deux oscillateurs. / Spin transfer nano-Oscillators (STNOs) are nanoscale devices capable of generating high frequency microwave signals through spin momentum transfer. Although they offer decisive advantages compared to existing technology (spectral agility, integrability, etc.), their emitted power and spectral purity are quite poor. In view of their applications, a promising strategy to improve the coherence and increase the emitted microwave power of these devices is to mutually synchronize several of them. A first step is to understand the synchronization of a single STNO to an external source. For this, we have studied a circular nanopillar of diameter 200~nm patterned from a Cu60|Py15|Cu10|Py4|Au25 stack, where thicknesses are in nm. In the saturated state (bias magnetic field > 0.8 T), we have identified the auto-Oscillating mode and its coupling to an external source by using a magnetic resonance force microscope (MRFM). Only the uniform microwave field applied perpendicularly to the bias field is efficient to synchronize the STNO because it shares the spatial symmetry of the auto-Oscillation mode, in contrast to the microwave current passing through the device. The same sample was then studied under low perpendicular magnetic field, with the two magnetic layers in the vortex state. In this case, it is possible to excite a highly coherent mode (F/∆F>15000) with a linewidth below 100 kHz. By analyzing the harmonic content of the spectrum, we have determined that the non-Linear amplitude-Phase coupling of the excited mode is almost vanishing, which explains the high spectral purity observed. Moreover, the oscillation frequency can still be widely tuned thanks to the Oersted field created by the dc current. We have also shown that the synchronization of this mode to a microwave field source is very robust, the generation linewidth decreasing by more than five orders of magnitude compared to the autonomous regime. From these findings we conclude that the magneto-Dipolar interaction is promising to achieve mutual coupling of vortex based STNOs, the dipolar field from a neighboring oscillator playing the role of the microwave source. We have thus experimentally measured a system composed of two STNOs laterally separated by 100 nm. By varying the different configurations of vortex polarities, we have observed the mutual synchronization of these two oscillators.
15

The effect of epitaxial strain and R³+ magnetism on the interfaces between polar perovskites and SrTiO₃

Monti, Mark Charles 08 June 2011 (has links)
We have embarked on a systematic study of novel charge states at oxide interfaces. We have performed pulsed laser deposition (PLD) growth of epitaxial oxide thin films on single crystal oxide substrates. We studied the effects of epitaxial strain and rare-earth composition of the metal oxide thin films. We have successfully created TiO₂ terminated SrTiO₃ (STO) substrates and have grown epitaxial thin films of LaAlO₃ (LAO), LaGaO₃ (LGO), and RAlO₃ on STO using a KrF pulsed excimer laser. Current work emphasizes the importance of understanding the effect of both epitaxial strain and R³+ magnetism on the interface between RAlO₃ and STO. We have demonstrated that the interfaces between LAO/STO and LGO/STO are metallic with carrier concentrations of 1.1 x 10¹⁴ cm[superscript -2] and 4.5 x 10¹⁴ cm[superscript −2], respectively. Rare-earth aluminate films, RAlO₃, with R = Ce, Pr, Nd, Sm, Eu, Gd, and Tb, were also grown on STO. Conducting interfaces were found for R = Pr, Nd and Gd, and the results indicate that for R [does not equal] La the magnetic nature of the R³+ ion causes increased scattering with decreasing temperature that is modeled by the Kondo effect. Epitaxial strain between the polar RAlO₃ films and STO appears to play a crucial role in the transport properties of the metallic interface, where a decrease in the R³+ ion size causes an increase in sheet resistance and an increase in the onset temperatures for increased scattering. / text

Page generated in 0.1056 seconds