• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Correlation between SQUID and Fluxgate Magnetometer Data-sets for Geomagnetic Storms: Hermanus

Matladi, Thabang-Kingsley 04 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: Superconducting QUantum Interference Devices (SQUIDs) are fairly recent types of magnetometers that use flux quantization combined with Josephson tunnelling to detect very faint (< 10¯15 T) magnetic fields. Recent scientific studies have shown that these highly sensitive magnetometers, located in an ultra-low-noise environment, are capable of observing Earth-ionosphere couplings, such as P waves emitted during earthquakes or magnetic storms in the upper atmosphere, S and T breathing modes of the Earth during quiet magnetic and seismic periods, signals in time correlating with sprites. Since SQUIDs are much more sensitive than conventional magnetometers, they are arguably the best tool for understanding space weather and natural hazards, whether they are produced from space or within the ionosphere by magnetic storms for instance, or natural disturbances, including magnetic disturbances produced by earthquakes or as a result of the dynamics of the earth's core. A study was conducted at SANSA Space Science in Hermanus, Western Cape, in 2012, to find the correlation between SQUID and Fluxgate data-sets, with the aim of validating the use of a SQUID as a reliable instrument for Space Weather observations. In that study, SQUID data obtained from the Low Noise Laboratory (LSBB) in France was compared to Fluxgate data-sets from the three closest magnetic observatories to LSBB, namely Chambon la For êt (France), Ebro (Spain) and Fürstenfeldbruck (Germany), all further than 500 km from LSBB. As a follow-up study, our aim is to correlate the SANSA Space Science SQUID data at Hermanus with Fluxgate magnetic data also recorded on-site (at Hermanus). There are notable di_erences between the previous study and the current study. In the previous study, the three-axis SQUID used comprised of three low-Tc devices operated in liquid helium (4.2 K) in an underground, low noise environment shielded from most human interferences. The SQUID magnetometer operated at Hermanus for the duration of this study is a high-Tc two-axis device (measuring the x and z components of the geomagnetic field). This SQUID magnetometer operates in liquid nitrogen (77 K), and is completely unshielded in the local geomagnetic field of about 26 uT. The environment is magnetically clean to observatory standards, but experiences more human interference than that at LSBB. The high-Tc SQUIDs also experience excessive 1/f noise at low frequencies which the low-Tc SQUIDs do not suffer from, but the big advantage of the current study is that the SQUIDs are located within 50 m from the observatory's fluxgate. We thus expect far better correlation between SQUID and fluxgate data than what was obtained in the previous study, which should improve the isolation of signals detected by the SQUID but not by the fluxgate. / AFRIKAANSE OPSOMMING: SQUIDs (supergeleidende kwantuminterferensietoestelle) is redelik onlangse tipes magnetometers wat vloedkwantisering saam met Josephson-tonneling gebruik om baie klein (< 10¯15 T) magnetiese velde waar te neem. Onlangse wetenskaplike studies het getoon dat hierdie hoogs sensitiewe magnetometers die vermoë het om Aarde-ionosfeerkoppeling waar te neem wanneer dit in 'n ultra-laeruisomgewing geplaas word. Sodanige koppeling sluit in: P-golwe wat deur aardbewings or magnetiese storms in die boonste atmosfeer veroorsaak word; S- en T-asemhalingsmodusse van die Aarde gedurende stil magnetiese en seismiese periodes; en seine in tyd wat korreleer met weerligeffekte in die boonste atmosfeer. Aangesien SQUIDs heelwat meer sensistief is as konvensionele magnetometers, is dit moontlik die beste gereedskap om ruimteweer en geassosieerde natuurlike gevare mee te analiseer; hetsy sulke toestande veroorsaak word vanaf die ruimte (deur die son) of binne die ionosfeer deur magnetiese storms of natuurlike steurings wat deur aardbewings of die dinamika van die Aardkern veroorsaak word. 'n Studie is in 2012 gedoen by SANSA Space Science in Hermanus in die Wes-Kaap om die korrelasie tussen SQUID- en vloedhekdatastelle te vind met die doel om SQUIDs as betroubare instrumente vir ruimteweerwaarneming te bevestig. In daardie studie is SQUID-data verkry vanaf die Laeruis Ondergrondse Laboratorium (LSBB) in Frankryk, en is dit vergelyk met vloedhekdatastelle vanaf die drie naaste magnetiese observatoriums aan LSBB, naamlik: Chambon la Forêt (Frankryk), Ebro (Spanje) en Fürstenfeldbruck (Duitsland). Al drie hierdie observatoriums is verder as 500 km vanaf LSBB. As 'n opvolgstudie is ons doelwit om SQUID- en vloedhekdata wat beide op die terrein van SANSA Space Science in Hermanus waargeneem word, te korreleer. Daar is merkbare verskille tussen hierdie en die vorige studies. In die vorige studie is 'n drie-as lae-Tc SQUID-magnetometer in vloeibare helium (4.2 K) in 'n laeruis ondergrondse laboratorium, afgeskerm teen menslike steurings, gebruik. Die SQUID-magnetometer wat vir die duur van die huidige studie by Hermanus gebruik is, is 'n hoë-Tc twee-as toestel (wat die x - en z -komponente van die geomagnetiese veld meet). Hierdie SQUID-magnetometer opereer in vloeibare stikstof teen 77 K, sonder enige afskerming in die geomagnetiese veld van ongeveer 26 uT. Die omgewing is magneties skoon volgens observatoriumstandaarde, maar ondervind meer menslik-veroorsaakde steurings as LSBB. Die hoë-Tc SQUIDs tel ook heelwat 1/f ruis op (wat lae-frekwensiemetings beïnvloed); iets wat nie 'n rol speel by die lae-Tc SQUIDs nie. Die groot voordeel van die huidige studie is dat die SQUIDs binne 50 meter vanaf die observatorium vloedhekke geleë is. Ons verwag dus heelwat beter korrelasie tussen SQUID- en vloedhekdata as wat met die vorige studie verkry is, wat dit makliker sal maak om die isolasie te verbeter van seine wat deur die SQUIDs waargeneem is, maar nie deur die vloedhekke nie.
12

Analysis of Particle Precipitation and Development of the Atmospheric Ionization Module OSnabrück - AIMOS

Wissing, Jan Maik 31 August 2011 (has links)
The goal of this thesis is to improve our knowledge on energetic particle precipitation into the Earth’s atmosphere from the thermosphere to the surface. The particles origin from the Sun or from temporarily trapped populations inside the magnetosphere. The best documented influence of solar (high-) energetic particles on the atmosphere is the Ozone depletion in high latitudes, attributed to the generation of HOx and NOx by precipitating particles (Crutzen et al., 1975; Solomon et al., 1981; Reid et al., 1991). In addition Callis et al. (1996b, 2001) and Randall et al. (2005, 2006) point out the importance of low-energetic precipitating particles of magnetospheric origin, creating NOx in the lower thermosphere, which may be transported downwards where it also contributes to Ozone depletion. The incoming particle flux is dramatically changing as a function of auroral/geomagnetical activity and in particular during solar particle events. As a result, the degree of ionization and the chemical composition of the atmosphere are substantially affected by the state of the Sun. Therefore the direct energetic or dynamical influences of ions on the upper atmosphere depend on solar variability at different time scales. Influences on chemistry have been considered so far with simplified precipitation patterns, limited energy range and restrictions to certain particle species, see e.g. Jackman et al. (2000); Sinnhuber et al. (2003b, for solar energetic protons and no spatial differentiation), and Callis et al. (1996b, 2001, for magnetospheric electrons only). A comprehensive atmospheric ionization model with spatially resolved particle precipitation including a wide energy range and all main particle species as well as a dynamic magnetosphere was missing. In the scope of this work, a 3-D precipitation model of solar and magnetospheric particles has been developed. Temporal as well as spatial ionization patterns will be discussed. Apart from that, the ionization data are used in different climate models, allowing (a) simulations of NOx and HOx formation and transport, (b) comparisons to incoherent scatter radar measurements and (c) inter-comparison of the chemistry part in different models and comparison of model results to MIPAS observations. In a bigger scope the ionization data may be used to better constrain the natural sources of climate change or consequences for atmospheric dynamics due to local temperature changes by precipitating particles and their implications for chemistry. Thus the influence of precipitating energetic particles on the composition and dynamics of the atmosphere is a challenging issue in climate modeling. The ionization data is available online and can be adopted automatically to any user specific model grid.

Page generated in 0.0399 seconds