• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 7
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 19
  • 19
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

磁気浮上制御系の非線形強制振動 (調和共振の分岐現象と超調波共振の発生)

井上, 剛志, INOUE, Tsuyoshi, 石田, 幸男, ISHIDA, Yukio, 池田, 陽介, IKEDA, Yosuke 06 1900 (has links)
No description available.
12

A systems dynamics economic evaluation methodology for high speed inter-city transportation /

Panicker, Anil T., January 1991 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1991. / Vita. Abstract. Includes bibliographical references (leaves 70-73). Also available via the Internet.
13

The prospects of Maglev for Hong Kong's railway development

Lam, Kwun-yi. January 2001 (has links)
Thesis (M.A.)--University of Hong Kong, 2001. / Includes bibliographical references. Also available in print.
14

A strategic vision of AVCS maglev and its socioeconomic implications /

Lee, Sang Hyup, January 1994 (has links)
Thesis (Ph. D.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 268-278). Also available via the Internet.
15

Controlled electrodynamic suspension vehicle damping

Knierim, Glenn Auld, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
16

Modeling and Control of a Magnetically Levitated Microrobotic System

Craig, David January 2006 (has links)
Magnetically levitated microrobotic systems have shown a great deal of promise for micromanipulation tasks. A new large-gap magnetic suspension system has recently been developed at the University of Waterloo in order to develop microrobotic systems for various applications. In order to achieve motion with the system, a model is needed in order to facilitate the design of various aspects of the system, such as the microrobot and the controller. In order to derive equations of motion for the system attempts were made to characterize the force produced by the magnetic drive unit in terms of a simple analytical equation. The force produced by the magnetic drive unit was estimated with the aid of a finite element model. The derived equations were able to predict the general trend of the force curves, and with sufficient parameter tweaking the error between the force estimated by the finite element model and the force estimated by the analytical equation could be minimized. System models describing the motion of the system in the horizontal and vertical directions are identified and compared to the actual system response. The vertical position response is identified through a least squares parameter estimate of the closed loop response combined with a partial reconstruction of the root locus diagram, with the model structure based on the known dynamics of a simplified form of magnetic levitation. This model was able to provide a reasonable prediction of the system response for a variety of PID controllers under a variety of input conditions. The horizontal models are identified using a least-squares parameter estimate of the open loop characteristics of the system. The horizontal models are able to provide a reasonable prediction of the system response under PD and PID control. Full spatial motion of a microrobot prototype is demonstrated over a working range of 20x22x30 mm<sup>3</sup>, with PID controller parameters and reference trajectories adjusted to minimize disturbances. The RMS error at steady state is on the order of 0. 020 mm for vertical positioning and 0. 008 mm for horizontal positioning. A linear quadratic regulator implemented for vertical position control was able to reduce the vertical position RMS error to 0. 014 mm.
17

Modeling and Control of a Magnetically Levitated Microrobotic System

Craig, David January 2006 (has links)
Magnetically levitated microrobotic systems have shown a great deal of promise for micromanipulation tasks. A new large-gap magnetic suspension system has recently been developed at the University of Waterloo in order to develop microrobotic systems for various applications. In order to achieve motion with the system, a model is needed in order to facilitate the design of various aspects of the system, such as the microrobot and the controller. In order to derive equations of motion for the system attempts were made to characterize the force produced by the magnetic drive unit in terms of a simple analytical equation. The force produced by the magnetic drive unit was estimated with the aid of a finite element model. The derived equations were able to predict the general trend of the force curves, and with sufficient parameter tweaking the error between the force estimated by the finite element model and the force estimated by the analytical equation could be minimized. System models describing the motion of the system in the horizontal and vertical directions are identified and compared to the actual system response. The vertical position response is identified through a least squares parameter estimate of the closed loop response combined with a partial reconstruction of the root locus diagram, with the model structure based on the known dynamics of a simplified form of magnetic levitation. This model was able to provide a reasonable prediction of the system response for a variety of PID controllers under a variety of input conditions. The horizontal models are identified using a least-squares parameter estimate of the open loop characteristics of the system. The horizontal models are able to provide a reasonable prediction of the system response under PD and PID control. Full spatial motion of a microrobot prototype is demonstrated over a working range of 20x22x30 mm<sup>3</sup>, with PID controller parameters and reference trajectories adjusted to minimize disturbances. The RMS error at steady state is on the order of 0. 020 mm for vertical positioning and 0. 008 mm for horizontal positioning. A linear quadratic regulator implemented for vertical position control was able to reduce the vertical position RMS error to 0. 014 mm.
18

Thermal effects on modular maglev steel guideways

Kim, Hyeong Jun. January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
19

Ανάλυση, εφαρμογή και πειραματική μελέτη μηχανικού συστήματος αιώρησης / Analysis, implementation and experimental study of mechanical levitation system

Κασιδάκης, Ευθύμιος, Λαδιάς, Νικόλαος 04 October 2011 (has links)
Σκοπός της διπλωματικής εργασίας, είναι η κατασκευή ενός κυκλώματος με ανάδραση για τον έλεγχο ενός ηλεκτρομαγνήτη με στόχο την αιώρηση ενός σταθερού μαγνητικού αντικειμένου. / The purpose of the thesis is to build a circuit with feedback in order to control a solenoid to levitate a constant magnetic object.
20

Modeling Automated Highway System Guideway Operations

Siess, Eric Joseph 04 February 1998 (has links)
The purpose of this research is to explore the operational characteristics of a Maglev-based Automated Highway System and how it would interact with freeway operations. The extension of traditional traffic flow phenomenon, including weaving, merging, and stopping distance, into the automated system is looked at. These are also extended into platoon operations and their effect on such properties as gap control and ultimately the capacity of such a system. The ability to incorporate an AHS system into the existing Interstate Highway System is investigated. This includes placing the magways in the right-of-way of the highway system and interfacing the AHS with the existing freeways. A model is developed and run to simulate the assignment of traffic between the freeway and the guideway links. Both operational concepts of user equilibrium and system optimal conditions are explored, and equations are found to estimate the amount of traffic which can be found on the links based on the total traffic volume. / Master of Science

Page generated in 0.0973 seconds