• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 44
  • 21
  • 20
  • Tagged with
  • 231
  • 166
  • 151
  • 98
  • 74
  • 74
  • 74
  • 45
  • 36
  • 31
  • 31
  • 30
  • 28
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nanopartikel in der Medizin magnetische Eisenoxid-Nanopartikel für intrakorporale Erwärmungsanwendungen

Dutz, Silvio January 2007 (has links)
Zugl.: Freiberg (Sachsen), Techn. Univ., Diss., 2007
22

Spin dependent transport and magnetic ordering in rare earth metals infrared spectroscopy on holmium /

Weber, Peter, January 2004 (has links) (PDF)
Stuttgart, Univ., Diss., 2004.
23

Resonante magnetische Röntgenuntersuchungen an einem Co/Cu/Co-Schichtsystem und an Platinlegierungen

Grüner, Uwe, January 2006 (has links)
Stuttgart, Univ., Diss., 2006.
24

Ferromagnetische Resonanzabsorption von reinen und mit Wasserstoff, Sauerstoff oder Palladium bedeckten ultradünnen Eisenfilmen

Wiechmann, Bodo, January 1982 (has links)
Thesis (Doctoral)--Universität Hannover, 1982.
25

Preparation, characterization and physical properties of new compounds in the system Ln 2 O 3-ReO 2- 1 2 Re 2 O 7 (Ln=lanthanides or yttrium)

Hartmann, Thomas. Unknown Date (has links) (PDF)
Techn. University, Diss., 2003--Darmstadt.
26

Polarized neutron reflectometry study of thin Fe films prepared on V(100)

Liu, Yuntao. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Berlin.
27

Supravodivost a magnetismus uranových sloučenin / Supravodivost a magnetismus uranových sloučenin

Vališka, Michal January 2013 (has links)
Cílem této práce je studium systému UCo1−xRuxGe nacházejícího se na rozhraní magnetické nestability. Podrobná studie magnetických a transportních vlastností po- lykrystal· s r·zným obsahem ruthenia odhalila komplexní změnu těchto parametr· v rámci celé série. UCoGe je slabý ferromagnet s TC ∼ 3 K a malým magnetickým momentem 0.035 µB/f.u. Pozorovali jsme strmý nár·st těchto hodnot až po hodnotu koncentrace ruthenia xmax ≈ 0.1(TC,max = 9 K a µ0 = 0.11 µB). Podstata tohoto ná- r·stu byla studována na mono krystalu o složení UCo0.88Ru0.12Ge získaném metodou plovoucí zóny. Difrakce polarizovaných neutron· provedená na tomto krystalu se slo- žením UCo0.88Ru0.12Ge vysvětlila posílení magnetismu změnou vzájemné orientace magnetických moment· na iontu uranu a kobaltu. Antiparalelní uspořádání, které bylo dříve publikováno pro UCoGe je změněno na paralelní uspořádání v dopova- ném UCo0.88Ru0.12Ge kdy dojde k reorientaci momentu na kobaltu. Silná anizotropie UCo0.88Ru0.12Ge se promítá do teplotní závislosti odporu a teplotní roztažnosti, které se dramaticky liší pro všechny tři osy. Tento prvotní nár·st TC a magnetického mo- mentu je následován poklesem směřujícím ke koncentraci xcr ≈ 0.31 kde magnetické uspořádání mizí. Podrobná studie kritických exponent· teplotních závislostí elek- trického odporu,...
28

Gezielte Manipulation Topologischer Isolatoren / Deliberate manipulation of topological insulators

Bathon, Thomas January 2021 (has links) (PDF)
Neue physikalische Erkenntnisse vervollständigen die Sicht auf die Welt und erschließen gleichzeitig Wege für Folgeexperimente und technische Anwendungen. Das letzte Jahrzehnt der Festkörperforschung war vom zunehmenden Fokus der theoretischen und experimentellen Erkundung topologischer Materialien geprägt. Eine fundamentale Eigenschaft ist ihre Resistenz gegenüber solchen Störungen, welche spezielle physikalische Symmetrien nicht verletzen. Insbesondere die Topologischen Isolatoren - Halbleiter mit isolierenden Volumen- sowie gleichzeitig leitenden und spinpolarisierten Oberflächenzuständen - sind vielversprechende Kandidaten zur Realisierung breitgefächerter spintronischer Einsatzgebiete. Bis zur Verwirklichung von Quantencomputern und anderer, heute noch exotisch anmutender Konzepte bedarf es allerdings ein umfassenderes Verständnis der grundlegenden, physikalischen Zusammenhänge. Diese kommen vor allem an Grenzflächen zum Tragen, weshalb oberflächensensitive Methoden bei der Entdeckung der Topologischen Isolatoren eine wichtige Rolle spielten. Im Rahmen dieser Arbeit werden daher strukturelle, elektronische und magnetische Eigenschaften Topologischer Isolatoren mittels Tieftemperatur-Rastertunnelmikroskopie und -spektroskopie sowie begleitenden Methoden untersucht. Die Veränderung der Element-Ausgangskonzentration während dem Wachstum des prototypischen Topologischen Isolators Bi2Te3 führt zur Realisierung eines topologischen p-n Übergangs innerhalb des Kristalls. Bei einem spezifischen Verhältnis von Bi zu Te in der Schmelze kommt es aufgrund unterschiedlicher Erstarrungstemperaturen der Komponenten zu einer Ansammlung von Bi- und Te-reichen Gegenden an den gegenüberliegenden Enden des Kristalls. In diesen bildet sich infolge des jeweiligen Elementüberschusses durch Kristallersetzungen und -fehlstellen eine Dotierung des Materials aus. Daraus resultiert die Existenz eines Übergangsbereiches, welcher durch Transportmessungen verifiziert werden kann. Mit der räumlich auflösenden Rastertunnelmikroskopie wird diese Gegend lokalisiert und strukturell sowie elektronisch untersucht. Innerhalb des Übergangsbereiches treten charakteristische Kristalldefekte beider Arten auf - eine Defektunterdrückung bleibt folglich aus. Dennoch ist dort der Beitrag der Defekte zum Stromtransport aufgrund ihres gegensätzlichen Dotiercharakters vernachlässigbar, sodass der topologische Oberflächenzustand die maßgeblichen physikalischen Eigenschaften bestimmt. Darüber hinaus tritt der Übergangsbereich in energetischen und räumlichen Größenordnungen auf, die Anwendungen bei Raumtemperatur denkbar machen. Neben der Veränderung Topologischer Isolatoren durch den gezielten Einsatz intrinsischer Kristalldefekte bieten magnetische Störungen die Möglichkeit zur Prüfung des topologischen Oberflächenzustandes auf dessen Widerstandsfähigkeit sowie der gegenseitigen Wechselwirkungen. Die Zeitumkehrinvarianz ist ursächlich für den topologischen Schutz des Oberflächenzustandes, weshalb magnetische Oberflächen- und Volumendotierung diese Symmetrie brechen und zu neuartigem Verhalten führen kann. Die Oberflächendotierung Topologischer Isolatoren kann zu einer starken Bandverbiegung und einer energetischen Verschiebung des Fermi-Niveaus führen. Bei einer wohldosierten Menge der Adatome auf p-dotiertem Bi2Te3 kommt die Fermi-Energie innerhalb der Volumenzustands-Bandlücke zum Liegen. Folglich wird bei Energien rund um das Fermi-Niveau lediglich der topologische Oberflächenzustand bevölkert, welcher eine Wechselwirkung zwischen den Adatomen vermitteln kann. Für Mn-Adatome kann Rückstreuung beobachtet werden, die aufgrund der Zeitumkehrinvarianz in undotierten Topologischen Isolatoren verboten ist. Die überraschenderweise starken und fokussierten Streuintensitäten über mesoskopische Distanzen hinweg resultieren aus der ferromagnetischen Kopplung nahegelegener Adsorbate, was durch theoretische Berechnungen und Röntgendichroismus-Untersuchungen bestätigt wird. Gleichwohl wird für die Proben ein superparamagnetisches Verhalten beobachtet. Im Gegensatz dazu führt die ausreichende Volumendotierung von Sb2Te3 mit V-Atomen zu einem weitreichend ferromagnetischen Verhalten. Erstaunlicherweise kann trotz der weitläufig verbreiteten Theorie Zeitumkehrinvarianz-gebrochener Dirac-Zustände und der experimentellen Entdeckung des Anormalen Quanten-Hall-Effektes in ähnlichen Probensystemen keinerlei Anzeichen einer spektroskopischen Bandlücke beobachtet werden. Dies ist eine direkte Auswirkung der dualen Natur der magnetischen Adatome: Während sie einerseits eine magnetisch induzierte Bandlücke öffnen, besetzen sie diese durch Störstellenresonanzen wieder. Ihr stark lokaler Charakter kann durch die Aufnahme ihrer räumlichen Verteilung aufgezeichnet werden und führt zu einer Mobilitäts-Bandlücke, deren Indizien durch vergleichende Untersuchungen an undotiertem und dotiertem Sb2Te3 bestätigt werden. / New physical insights make up for a more complete vision onto the world and allow for subsequent experiments and technical implementations. The last decade in solid state physics was increasingly focusing on the theoretical and experimental discovery and investigation of topological materials. A very basic property is their robustness against perturbations not violating certain physical symmetries. Especially Topological Insulators - semiconductors with insulating bulk but conducting and spin-polarized surface states - are promising candidates for the attainment of a wide spectrum of spintronics applications. Till realization of quantum computing and up to now futuristically sounding concepts a deeper understanding of the fundamental physics is required. Since topological properties usually manifest at boundaries, surface sensitive techniques played a substantial role in the exploration of Topological Insulators. Within this thesis structural, electronic and magnetic properties of Topological Insulators are investigated by means of scanning tunneling microscopy and spectrocopy and supporting methods. Variation of the initial elemental concentration in the crystal growth process of the prototypical Topological Insulator Bi2Te3 leads to the realization of a topological p-n junction within the crystal. At a certain elemental ratio in the melt excess of Bi and Te will be obtained at the opposing ends of the crystal due to the different solidification temperatures. In these areas vacancies and substitutions give rise to p- and n-type doping, respectively. This implies the very existence of an intrinsic transition area, which can by verified by transport experiments. The junction area can be localized and structurally as well as spectroscopically examined by means of scanning tunneling microscopy. It can be shown that in the vicinity of this transition region both types of characteristic defects are present. This indicates that defects are not suppressed but compensated in this region. Nevertheless their contribution to bulk transport is minimal because of their opposite doping character, letting the topological surface state dominate the relevant physical properties. Furthermore the transition region meets the energetic and spatial dimensions that are promising for applications at room temperature. Besides the manipulation of Topological Insulators by using intrinsic crystallographic defects, magnetic perturbations are a powerful method to test the robustness of and the interaction with the topological surface state. Since Topological Insulators are initially protected by the time-reversal symmetry, magnetic surface and bulk doping can lift this protection and give rise to novel phenomena. Surface magnetic doping of Topological Insulators with Co- and Mn-adatoms can yield for a rigid band bending and a shift of the Fermi level. At a well defined amount of dopants in the p-type Bi2Te3 the Fermi energy lies in the bulk bandgap. Therefore, at energies close to the Fermi level only the topological surface state is occupied and can mediate inter-adsorbate interactions. In the case of Mn-doping backscattering is observed that is forbidden on undoped Topological Insulators due to the time-reversal symmetry. As evidenced by theory and x-ray magnetic circular dichroism ferromagnetic coupling between adsorbates gives rise to surprisingly strong and focused scattering intensities. However, long-ranging ferromagnetic order is absent but superparamagnetic characteristics can be detected. In contrast to surface doping sufficient bulk doping of Sb2Te3 with V-atoms can give rise to long-range ferromagnetic order. Surprisingly, a spectral bandgap is absent despite the general assumed theoretical framework of time-reversal symmetry gapped Dirac states and the discovery of the quantum anomalous hall effect in similar sample systems. This is figured out to be a direct consequence of the dual nature of the magnetic dopants: while on the one hand opening up a magnetization induced gap, they fill it by creating intragap states. Their local character, visualized by mapping of their spatial distribution, leads to a mobility gap that is confirmed by direct comparison of the undoped and V-doped Topological Insulator by means of Landau level spectroscopy.
29

Elektronové vlastnosti sloučenin RPd5Al2 / Elektronové vlastnosti sloučenin RPd5Al2

Zubáč, Jan January 2016 (has links)
We have studied magnetic properties of the intermetallic NdPd5Al2 com- pound by means of specific heat and magnetization measurements and neutron scattering. The compound crystallizes in the tetragonal I4/mmm space group with lattice parameters a =4.147 ˚A and c =14.865 ˚A, orders antiferromagnet- ically below TN =1.3 K and presents large magnetocrystalline anisotropy due to the crystal-field effects. The obtained magnetic phase diagram is charac- terized by two distinct magnetically ordered phases similarly to structurally re- lated tetragonal RTX5 and R2TX8 compounds. The zero-field antiferromagnetic phase is characterized by the propagation vector k = (1 2 00) and antiferromag- netic coupling of Nd moments along the teragonal c-axis with the amplitude of magnetic moments of 2.22 µB/Nd as was revealed by neutron diffraction. The transition from the paramagnetic to magnetically ordered in zero field is the first-order phase transition. The CF excitations in NdPd5Al2 were detected by means of INS at 3.0 meV, 7.4 meV, 8.6 meV and 17.1 meV. We further compare our findings about CF in NdPd5Al2 obtained from INS, susceptibility analysis and first-principles calculations and confront them with the experimental mag- netization and magnetic specific heat data. Our results will be also discussed with respect to related...
30

One- and Two-Particle Correlation Functions in the Dynamical Quantum Cluster Approach / Ein- und Zwei-Teilchen Korrelationsfunktionen in der Dynamischen Quanten Cluster Näherung

Hochkeppel, Stephan January 2008 (has links) (PDF)
This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes are dressed by spin-excitations to allow for a coherent motion. By increasing doping, all features which are linked to the spin-polaron vanish in the single-particle as well as two-particle spin response spectrum. In the second part of the thesis an analysis of superconductivity in the Hubbard model is presented. The superconducting instability is implemented within the Dynamical Cluster Approximation by essentially allowing U(1) symmetry breaking baths in the QMC calculations for the cluster. The superconducting transition temperature T_c is derived from the d-wave order parameter which is directly estimated on the Monte Carlo cluster. The critical temperature T_c is in astonishing agreement with the temperature scale estimated by the divergence of the pair-field susceptibility in the paramagnetic phase. A detailed study of the pseudo and superconducting gap is continued by the investigation of the local and angle-resolved spectral function. / In der vorliegenden Arbeit wird das zwei-dimensionale Hubbard Modell im Bereich stark wechselwirkender Elektronen mit Hilfe der Dynamischen Cluster Approximation (DCA) untersucht. Im Rahmen der DCA wird das gegebene Gitter-Problem auf einen Cluster, der selbst-konsistent in einem effektiven Medium eingebettet ist, abgebildet. Somit stellt die DCA eine Erweiterung zur Dynamischen Molekularfeld-Theorie dar, indem nicht-lokale Korrelationen berücksichtigt werden. Ein Ziel dieser Arbeit stellt die Untersuchung von dynamischen Korrelationsfunktionen für das Hubbard Modell dar. Dazu wird die Dynamische Cluster Approximation auf die Untersuchung von Zwei-Teilchen Korrelationsfunktionen erweitert. Der volle irreduzible Zweiteilchen-Vertex mit drei Impulsen und Frequenzen wird durch einen effektiven Vertex, dessen Impuls und Frequenzabhängigkeit durch das Spin- bzw. Ladungs-Anregungsspektrum gegeben ist, approximiert. Der effektive Vertex wird mit Hilfe der Quanten Monte Carlo Technik auf einem endlichen Cluster bestimmt, wobei die dynamischen Grössen durch eine stochastische Version der Maximum Entropie Methode auf die reelle Frequenz-Achse analytisch fortgesetzt werden. Ein Vergleich mit dem gewöhnlichen BSS Quanten Monte Carlo Verfahren dient als Maßstab für unsere Näherung der Zwei-Teilchen Korrelationsfunktionen. Der Vergleich zeigt auf, dass unsere Methode grundlegende Eigenschaften des Spin- und Ladungs-Anregungsspektrums reproduzieren kann. Für optimale bzw. höhere Dotierungen erhalten wir ein übereinstimmendes Gesamtbild zwischen Ladungs-, Spin-, und Ein-Teilchen-Anregungsspektrum: bei optimaler Dotierung und hinreichend niedriger Temperatur tritt eine kollektive Spin-Mode im Spin-Anregungsspektrum auf und zeigt einen Energiezweig mit der Energieskala J, wobei J die magnetische Austauschenergie beschreibt. Gleichzeitig werden die Niederenergie-Anregungen im Ein-Teilchen-Spektrum durch ein Quasiteilchenband mit Bandbreite J beschrieben. Der Ursprung des Quasiteilchens lässt sich durch das Bild eines mehr oder weniger geordneten antiferromagnetischen Hintergrundes erklären, in dem sich Löcher umgeben von einer Wolke von Spin-Anregungen kohärent durch das Gitter bewegen. Bei zunehmender Dotierung verschwinden sowohl im Ein-Teilchen, als auch im Zwei-Teilchen Spin-Spektrum alle Anzeichen, die im Zusammenhang mit der Niederenergie-Skala J und dem oben beschriebenen Spin-Polaron stehen. Die Änderung der Dotierung führt des weiteren zu einem Transfer von spektralem Gewicht im Ein-Teilchen Spektrum, der sich ebenfalls im Ladungs-Anregungsspektrum bemerkbar macht. Im zweiten Teil der Arbeit wird eine Analyse über die supraleitenden Eigenschaften des Hubbard Modells präsentiert. Die supraleitende Instabilität wird im Rahmen der Dynamischen Cluster Approximation durch die Implementierung eines U(1)-Symmetrie brechenden Mediums in der Monte Carlo Rechnung für den Cluster berücksichtigt. Die supraleitende Übergangstemperatur T_c wird von dem Wert des auf dem Cluster bestimmten d-Wellen Ordnungsparameters abgeleitet. Die kritische Temperatur T_c ist in überraschend guter Übereinstimmung mit der Energieskala, die durch eine Divergenz der Paarfeld-Suszeptibilität in der paramagnetischen Phase bestimmt worden ist. Die Temperaturabhängigkeit der Pseudo- und supraleitenden Lücke wird mit der Bestimmung der Zustandsdichte und der Impuls-aufgelösten Spektralfunktion untersucht. Im Gegensatz zur der Herausbildung einer supraleitenden Lücke unterhalb der Sprungtemperatur, kann die Bildung einer Pseudo-Lücke in der Impuls-abhängigen Spektraldichte nicht aufgelöst werden.

Page generated in 0.0436 seconds