Spelling suggestions: "subject:"magnetization."" "subject:"agnetization.""
61 |
High Frequency Behaviour of Magnetic Thin Film Elements for MicroelectronicsChumakov, Dmytro 13 March 2007 (has links) (PDF)
Magnetismus ist ein Phänomen, das eine wichtige Rolle in einer Vielfalt technischer Anwendungen spielt. Ohne den Einsatz magnetischer Effekte und Materialen wäre der heutzutage erreichte technische Fortschritt unmöglich, da viele grundlegende Techniken wie Stromerzeugung, elektrischer Antrieb, Informationsübertragung und viele andere auf magnetische bzw. elektromagnetische Phänomene zurückzuführen sind. Dabei haben die ferromagnetischen Materialen stets zur Effizienz von elektrischen und elektronischen Anwendungen beigetragen, weswegen an diesen Materialen auch entsprechend viel geforscht worden ist. Moderne Technologien, insb. Massenspeicher basieren oft auf Ferromagneten und erfordern daher die weitere Erforschung und Anpassung ihrer Eigenschaften. Für die Funktionalität von Hochgeschwindigkeitsgeräten spielt das dynamische Verhalten dünner magnetischer Schichten eine kritische Rolle. In dieser Arbeit wird die Magnetisierungsdynamik dünner Schichtelemente mittels zeitaufgelöster Weitfeld- Kerrmikroskopie untersucht. Dies ist ein aktuelles Thema, an dem in den letzten Jahren sehr intensiv gearbeitet wird. Allerdings sind viele für die Anwendungen sehr wichtige Details des magnetischen Schaltens wegen ihre Vielfältigkeit und Komplexität doch nicht vollständig untersucht und verstanden. In dieser Arbeit werden überwiegend experimentelle Ergebnisse vorgestellt, die einen zusätzlichen Beitrag zum aktuellen Wissenstand leisten. In einem ferromagnetischen Körper bilden sich Bereiche mit spontaner Magnetisierung, die man als Domänen bezeichnet. Die spontane Magnetisierung entsteht aufgrund der Spin-Spin Wechselwirkung, und die Domänen bilden sich aufgrund der Energieminimierung des magnetisierten Körpers. Langsame Magnetisierungsprozesse werden im Wesentlichen getragen von Domänenumordnungen und Domänengrenzenverschiebungen. Solche Prozesse bezeichnet man als quasistatisch, da sich der Körper durch deren Langsamkeit immer im Gleichgewicht oder zumindest sehr nahe daran befindet. Mit zunehmender Anregungsgeschwindigkeit gilt diese Annahme nicht mehr, da die Präzessionsbewegung der magnetischen Momente das Schaltverhalten in diesem Fall definiert. Die Untersuchung der Magnetisierungsdynamik setzt die Möglichkeit voraus, nicht-unterbrochene Prozesse beobachten zu können. Dieses Ziel kann mittels stroboskopischer Abbildung erreicht werden. Dabei wird derselbe Prozess kontinuierlich wiederholt (vorausgesetzt, dass die Prozesse sich reproduzierbar wiederholen lassen), und zu definierten Zeitpunkten werden die entsprechenden Kerraufnahmen gemacht. Dafür wird eine CCD Kamera mit einem Photoverstärker benutzt, welcher als optischer Schalter fungiert. Die Zeitauflösung dieses Systems und damit auch das Vermögen, die Hochfrequenzvorgänge abzubilden, beträgt 250 ps. Die Eigenschaften des magnetischen Umschaltens hängen stark von der Elementgeometrie ab. Diese Unterschiede sind auf unterschiedliche Entmagnetisierungsfaktoren, und damit auf Unterschiede in den effektiven Feldern zurückzuführen. Solche Unterschiede werden auf zwei Weisen initiiert: ein quadratisches Element wird entlang unterschiedlicher Richtungen (entlang der Seite und der Diagonalen) angeregt; die Form des Elementes wird zwischen Quadrat und Rechteck mit unterschiedlichen Seitenverhältnissen variiert. Die beobachteten Schaltvorgänge werden miteinander verglichen und die Ergebnisse dargestellt. Dabei werden auch die dynamischen Vorgänge immer mit den quasistatischen verglichen. Aus dem Vergleich folgt, dass ein steigendes Seitenverhältnis zur geringeren Schaltgeschwindigkeit führt, und dass die dabei entstehenden Domänen zunehmend komplexer werden. Dabei gibt es wesentliche Unterschiede zwischen den dynamischen und quasistatischen Domänen, vor allem in der Domänenwandstruktur. Das Schalten an sich unterscheidet sich auch sehr stark. Quasistatisches Schalten erfolgt überwiegend durch Domänenwandbewegung, während das dynamische Schalten durch inkohärente Rotation der Magnetisierung im ganzen Element erfolgt. Das Hochfrequenzverhalten am Prototypen eines Mikroinduktors wird untersucht. Der Induktor besteht aus vielen magnetischen Elementen, die eine induzierte uniaxiale Anisotropie besitzen. Diese ist bei der Hälfte der Elemente entlang des Magnetfeldes, und bei der anderen Hälfte senkrecht zum Magnetfeld der Spule ausgerichtet. Das dynamische Verhalten der beiden Elementtypen unterscheidet sich stark, vor allem die Ummagnetisierungsgeschwindigkeit. Diese Unterschiede können zu einer Phasenverschiebung im elektrischen Signal führen, was die Effizienz des Induktors senkt. Durch die Untersuchung der Magnetisierungsdynamik in Wechselfeldern unterschiedlicher Frequenz ist auch festgestellt worden, dass bis 100 MHz die Magnetisierungsvorgänge überwiegend durch Domänenwandbewegung erfolgen, während ab 200 MHz- Rotationsprozesse stattfinden.
|
62 |
Développement d'un dispositif de champ magnétique réversible à base des cryo-aimants supraconducteurs / Development of a pulsed magnetic field generator based on superconducting cryo-magnetsDupont, Louis 13 February 2018 (has links)
Les cryo-aimants supraconducteurs sont des sources de champs magnétiques intenses, compactes et peu gourmandes en énergie. Il existe diverses méthodes d’aimantation mais seule l’aimantation par champ magnétique pulsé (PFM) permet d’obtenir des champs excitateurs élevés sans recourir à des bobines supraconductrices refroidies.Basé sur une collaboration industrielle, ce travail a été consacré dans un premier temps à la conception d’un générateur de courant pulsé compact et évolutif générant des rampes de pulse de polarité réglage pouvant atteindre 3000A.Dans un second temps, nous avons mis en place les différents systèmes permettant l’aimantation des cryo-aimants refroidis soit à 77 K, soit dans un cryostat refroidi par un cryo-générateur.Enfin, l’aimantation par pulses de champ des cryo-aimants supraconducteurs a montré la possibilité de piéger un champ magnétique de l’ordre du tesla, réversible et reproductible. Les résultats obtenus répondent aux impératifs industriels de l’étude. Ils sont très encourageants pour le développement d’un dispositif de champ magnétique réversible à base de cryo-aimants supraconducteurs pour l’instrumentation scientifique ou pour les applications électrotechniques. / Superconducting cryomagnets are high magnetic fields sources that are both compact and energy efficient. There are various magnetization technics but only the magnetization by pulsed magnetic field (PFM) results in high excitation fields, that otherwise could only be obtained with large superconducting coils.This work was done in the framework of an industrial collaboration. In a first step, a compact and innovative pulse current generator enabling the generation of pulses with a 3000 Amps maximum intensity was designed and fabricated. Secondly, different systems for the magnetization of cryo-magnets either cooled down to 77 K or cooled in a cryostat by a cryo-generator were implemented. Finally, the pulsed field magnetization of superconducting cryo-magnets has shown that reversible and reproducible magnetic field in the one Tesla range could be generated by the set up.The results obtained are consistent with the industrial goals of this study. They are very encouraging for the development of reversible magnetic field devices based on superconducting cryo-magnets and dedicated to scientific instrumentation or for electrotechnical applications.
|
63 |
Analyse der dynamischen Magnetisierungsprozesse nanokristalliner WeichmagneteFlohrer, Sybille 12 April 2007 (has links) (PDF)
Nutzbare Energie ist ein knappes Gut. Aus ökonomischen und ökologischen Gründen wird die effiziente und nachhaltige Nutzung der verfügbaren Energie angestrebt. Wird Energie in elektrischer Form bereitgestellt oder transportiert, kommt der Minimierung der Verluste an elektrotechnischen Anlagen oder Bauelementen eine grundlegende Bedeutung zu. So werden beispielsweise Transformatorenkomponenten und Verstärkerelemente aus weichmagnetischen Werkstoffen mit geringem Ummagnetisierungsverlust gefertigt. In dieser Arbeit wird der Zusammenhang zwischen der magnetischen Mikrostruktur und dem magnetischen Ummagnetisierungsverlust nanokristalliner Ringbandkerne untersucht. Der Einfluss von Stärke und Lage einer induzierten Anisotropie wird anhand induktiver Hysteresemessung und simultaner Beobachtung magnetischer Domänen mit stroboskopischer Kerrmikroskopie charakterisiert.
|
64 |
First-order reversal curve analysis of magnetoactive elastomersLinke, Julia M., Borin, Dmitry Yu., Odenbach, Stefan 21 July 2017 (has links) (PDF)
The first magnetization loop and the first stress–strain cycle of magnetoactive elastomers (MAEs) in a magnetic field differ considerably from the following loops and cycles, possibly due to the internal restructuring of the magnetic filler particles and the matrix polymer chains. In the present study, the irreversible magnetization processes during the first magnetization of MAEs with different filler compositions and tensile moduli of the matrix are studied by first-order reversal curve (FORC) measurements. For MAEs with mixed magnetic NdFeB/Fe fillers the FORC distributions and magnetization distributions of the first major loop reveal a complex irreversible magnetization behavior at interaction fields Hu < −50 kA m−1 due to the magnetostatic coupling between the magnetically hard NdFeB and the magnetically soft Fe particles. This coupling is enhanced either if the interparticle distance is reduced by particle motion and restructuring or by an increase in the particle densities. If the stiffness of the matrix is increased, the structuring and thus the interparticle interactions are suppressed and the magnetization reversal is dominated by domain processes in the NdFeB particles at high coercive fields of Hc > 600 kA m−1.
|
65 |
First-order reversal curve analysis of magnetoactive elastomersLinke, Julia M., Borin, Dmitry Yu., Odenbach, Stefan 21 July 2017 (has links)
The first magnetization loop and the first stress–strain cycle of magnetoactive elastomers (MAEs) in a magnetic field differ considerably from the following loops and cycles, possibly due to the internal restructuring of the magnetic filler particles and the matrix polymer chains. In the present study, the irreversible magnetization processes during the first magnetization of MAEs with different filler compositions and tensile moduli of the matrix are studied by first-order reversal curve (FORC) measurements. For MAEs with mixed magnetic NdFeB/Fe fillers the FORC distributions and magnetization distributions of the first major loop reveal a complex irreversible magnetization behavior at interaction fields Hu < −50 kA m−1 due to the magnetostatic coupling between the magnetically hard NdFeB and the magnetically soft Fe particles. This coupling is enhanced either if the interparticle distance is reduced by particle motion and restructuring or by an increase in the particle densities. If the stiffness of the matrix is increased, the structuring and thus the interparticle interactions are suppressed and the magnetization reversal is dominated by domain processes in the NdFeB particles at high coercive fields of Hc > 600 kA m−1.
|
66 |
High Frequency Behaviour of Magnetic Thin Film Elements for MicroelectronicsChumakov, Dmytro 20 November 2006 (has links)
Magnetismus ist ein Phänomen, das eine wichtige Rolle in einer Vielfalt technischer Anwendungen spielt. Ohne den Einsatz magnetischer Effekte und Materialen wäre der heutzutage erreichte technische Fortschritt unmöglich, da viele grundlegende Techniken wie Stromerzeugung, elektrischer Antrieb, Informationsübertragung und viele andere auf magnetische bzw. elektromagnetische Phänomene zurückzuführen sind. Dabei haben die ferromagnetischen Materialen stets zur Effizienz von elektrischen und elektronischen Anwendungen beigetragen, weswegen an diesen Materialen auch entsprechend viel geforscht worden ist. Moderne Technologien, insb. Massenspeicher basieren oft auf Ferromagneten und erfordern daher die weitere Erforschung und Anpassung ihrer Eigenschaften. Für die Funktionalität von Hochgeschwindigkeitsgeräten spielt das dynamische Verhalten dünner magnetischer Schichten eine kritische Rolle. In dieser Arbeit wird die Magnetisierungsdynamik dünner Schichtelemente mittels zeitaufgelöster Weitfeld- Kerrmikroskopie untersucht. Dies ist ein aktuelles Thema, an dem in den letzten Jahren sehr intensiv gearbeitet wird. Allerdings sind viele für die Anwendungen sehr wichtige Details des magnetischen Schaltens wegen ihre Vielfältigkeit und Komplexität doch nicht vollständig untersucht und verstanden. In dieser Arbeit werden überwiegend experimentelle Ergebnisse vorgestellt, die einen zusätzlichen Beitrag zum aktuellen Wissenstand leisten. In einem ferromagnetischen Körper bilden sich Bereiche mit spontaner Magnetisierung, die man als Domänen bezeichnet. Die spontane Magnetisierung entsteht aufgrund der Spin-Spin Wechselwirkung, und die Domänen bilden sich aufgrund der Energieminimierung des magnetisierten Körpers. Langsame Magnetisierungsprozesse werden im Wesentlichen getragen von Domänenumordnungen und Domänengrenzenverschiebungen. Solche Prozesse bezeichnet man als quasistatisch, da sich der Körper durch deren Langsamkeit immer im Gleichgewicht oder zumindest sehr nahe daran befindet. Mit zunehmender Anregungsgeschwindigkeit gilt diese Annahme nicht mehr, da die Präzessionsbewegung der magnetischen Momente das Schaltverhalten in diesem Fall definiert. Die Untersuchung der Magnetisierungsdynamik setzt die Möglichkeit voraus, nicht-unterbrochene Prozesse beobachten zu können. Dieses Ziel kann mittels stroboskopischer Abbildung erreicht werden. Dabei wird derselbe Prozess kontinuierlich wiederholt (vorausgesetzt, dass die Prozesse sich reproduzierbar wiederholen lassen), und zu definierten Zeitpunkten werden die entsprechenden Kerraufnahmen gemacht. Dafür wird eine CCD Kamera mit einem Photoverstärker benutzt, welcher als optischer Schalter fungiert. Die Zeitauflösung dieses Systems und damit auch das Vermögen, die Hochfrequenzvorgänge abzubilden, beträgt 250 ps. Die Eigenschaften des magnetischen Umschaltens hängen stark von der Elementgeometrie ab. Diese Unterschiede sind auf unterschiedliche Entmagnetisierungsfaktoren, und damit auf Unterschiede in den effektiven Feldern zurückzuführen. Solche Unterschiede werden auf zwei Weisen initiiert: ein quadratisches Element wird entlang unterschiedlicher Richtungen (entlang der Seite und der Diagonalen) angeregt; die Form des Elementes wird zwischen Quadrat und Rechteck mit unterschiedlichen Seitenverhältnissen variiert. Die beobachteten Schaltvorgänge werden miteinander verglichen und die Ergebnisse dargestellt. Dabei werden auch die dynamischen Vorgänge immer mit den quasistatischen verglichen. Aus dem Vergleich folgt, dass ein steigendes Seitenverhältnis zur geringeren Schaltgeschwindigkeit führt, und dass die dabei entstehenden Domänen zunehmend komplexer werden. Dabei gibt es wesentliche Unterschiede zwischen den dynamischen und quasistatischen Domänen, vor allem in der Domänenwandstruktur. Das Schalten an sich unterscheidet sich auch sehr stark. Quasistatisches Schalten erfolgt überwiegend durch Domänenwandbewegung, während das dynamische Schalten durch inkohärente Rotation der Magnetisierung im ganzen Element erfolgt. Das Hochfrequenzverhalten am Prototypen eines Mikroinduktors wird untersucht. Der Induktor besteht aus vielen magnetischen Elementen, die eine induzierte uniaxiale Anisotropie besitzen. Diese ist bei der Hälfte der Elemente entlang des Magnetfeldes, und bei der anderen Hälfte senkrecht zum Magnetfeld der Spule ausgerichtet. Das dynamische Verhalten der beiden Elementtypen unterscheidet sich stark, vor allem die Ummagnetisierungsgeschwindigkeit. Diese Unterschiede können zu einer Phasenverschiebung im elektrischen Signal führen, was die Effizienz des Induktors senkt. Durch die Untersuchung der Magnetisierungsdynamik in Wechselfeldern unterschiedlicher Frequenz ist auch festgestellt worden, dass bis 100 MHz die Magnetisierungsvorgänge überwiegend durch Domänenwandbewegung erfolgen, während ab 200 MHz- Rotationsprozesse stattfinden.
|
67 |
Spin Transport and Magnetization Dynamics in Various Magnetic SystemsZhang, Shulei January 2014 (has links)
The general theme of the thesis is the interplay between magnetization dynamics and spin transport. The main presentation is divided into three parts. The first part is devoted to deepening our understanding on magnetic damping of ferromagnetic metals, which is one of the long-standing issues in conventional spintronics that has not been completely understood. For a nonuniformly-magnetized ferromagnetic metal, we find that the damping is nonlocal and is enhanced as compared to that in the uniform case. It is therefore necessary to generalize the conventional Landau-Lifshitz-Gilbert equation to include the additional damping. In a different vein, the decay mechanism of the uniform precession mode has been investigated. We point out the important role of spin-conserving electron-magnon interaction in the relaxation process by quantitatively examining its contribution to the ferromagnetic resonance linewidth. In the second part, a transport theory is developed for magnons which, in addition to conduction electrons, can also carry and propagate spin angular momentum via the magnon current. We demonstrate that the mutual conversion of magnon current and spin current may take place at magnetic interfaces. We also predict a novel magnon-mediated electric drag effect in a metal/magnetic-insulator/metal trilayer structure. This study may pave the way to the new area of insulator-based spintronics. In the third part of thesis, particular attention is paid to the influence the spin orbit coupling on both charge and spin transport. We theoretically investigate magnetotransport anisotropy and the conversion relations of spin and charge currents in various magnetic systems, and apply our results to interpret recent experiments.
|
68 |
Magnetic and superconducting phases of heavy fermion compoundsSaxena, Siddharth Shanker January 1998 (has links)
No description available.
|
69 |
A model for saturation magnetic recording based on periodic arctangent magnetisation distributionsEdwards, John January 1980 (has links)
No description available.
|
70 |
An investigation of some magnetic oxides grown by pulsed laser depositionSena, S. P. January 1998 (has links)
No description available.
|
Page generated in 0.0658 seconds