• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low Dissipative Relaxation Scheme For Hyperbolic Consevation Laws

Kaushik, K N 01 1900 (has links) (PDF)
No description available.
2

Fitted numerical methods to solve differential models describing unsteady magneto-hydrodynamic flow

Buzuzi, George January 2011 (has links)
Philosophiae Doctor - PhD / In this thesis, we consider some nonlinear differential models that govern unsteady magneto-hydrodynamic convective flow and mass transfer of viscous, incompressible,electrically conducting fluid past a porous plate with/without heat sources. The study focusses on the effect of a combination of a number of physical parameters (e.g., chemical reaction, suction, radiation, soret effect,thermophoresis and radiation absorption) which play vital role in these models.Non dimensionalization of these models gives us sets of differential equations. Reliable solutions of such differential equations can-not be obtained by standard numerical techniques. We therefore resorted to the use of the singular perturbation approaches. To proceed, each of these model problems is discretized in time by using a suitable time-stepping method and then by using a fitted operator finite difference method in spatial direction. The combined methods are then analyzed for stability and convergence. Aiming to study the robustness of the proposed numerical schemes with respect to change in the values of the key parame- ters, we present extensive numerical simulations for each of these models. Finally, we confirm theoretical results through a set of specificc numerical experiments.

Page generated in 0.0575 seconds