• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pulsed Laser Deposition of Thin Film Heterostructures

Garza, Ezra 04 August 2011 (has links)
Thin films of Strontium Ruthenate have been grown on Strontium Titanate and Lanthanum Aluminate (100) substrates by pulsed laser deposition. X-ray diffraction results show that the films grown on the Strontium Titanate are amorphous and polycrystalline on the Lanthanum Aluminate. Resistances versus temperature measurements show that the films exhibit semiconducting characteristics. In addition to the growth of Strontium Ruthenate thin films, multilayer heterostructures of Terfenol-D thin films on polycrystalline Lead Titanate thin films were grown by pulsed laser deposition. By using a novel experimental technique called magnetic field assisted piezoelectric force microscopy it is possible to investigate the magnetoelectric coupling between the electrostrictive Lead Titanate and magnetostrictive Terfenol-D thin film. Upon examination of the produced thin films the phase and amplitude components of the piezoelectric signal experience changes in response to an applied in-plane magnetic field. These changes provide experimental evidence of a magnetoelectric coupling between the Terfenol-D and Lead Titanate layers.
2

Magnetoelectric Coupling in BaTiO3-BiFeO3 Multilayers: Growth Optimization and Characterization

Hohenberger, Stefan 12 February 2021 (has links)
The presented thesis explores the magnetoelectric (ME) coupling in multiferroic thin film multilayers of BaTiO3 (BTO) and BiFeO3 (BFO). Multiferroics possess more than one ferroic order parameter, in this case ferroelectricity and anti-ferromagnetism. Cross-coupling between these otherwise separate order parameters promises great advantages in the fields of multistate memory, spintronics and even medical applications. The first major challenge in this field of study is the rarity of multiferroics. Second, most known multiferroics, both intrinsic and extrinsic in nature, possess very low ME coupling coefficients. In previous studies conducted by our group, BTO-BFO multilayers deposited by pulsed laser deposition (PLD) showed a ME coupling coefficient αME enhanced by one order of magnitude, when compared to single-layers of the intrinsic multiferroic BFO. However, the mechanism of ME coupling in such heterostructures is poorly understood until now. In this thesis, we used a selection of structural, chemical, electrical and magnetic measurements to maximize the αME-coefficient and shed light on the origin of this enhanced ME effect. The comparison of BTO-BFO multilayers over single-layers revealed not only enhanced ME-coupling, but also reduced mosaicity, roughness and leakage current density in multilayers. Following a parametric sample optimization, we achieved an atomically smooth interface roughness and vast improvements in the ferroelectric properties by introducing a shadow mask in the PLD process. We measured the highest αME-value so far of 480 Vcm-1Oe-1 for a multilayer with a double-layer thickness of only 4.6 nm, two orders of magnitude larger than the coefficient of 4 Vcm-1Oe-1 measured for BFO single-layers. The αME-coefficient in these multilayers stands in an inverse correlation with the double-layer thickness ddl. The influence of oxygen pressure during growth and BTO-BFO ratio on αME was shown to be neglible in comparison to that of ddl. From the characteristic dependencies of αME on magnetic bias field, temperature and ddl, we concluded the existence of an interface-driven coupling mechanism in BTO-BFO multilayers.:1 Introduction 2 Theory of Multiferroic Magnetoelectrics 2.1 Primary Ferroic Properties 2.2 Magnetoelectric Coupling 3 Materials 3.1 The General Structure of Perovskites ABX3 3.2 Strontium Titanate SrTiO3 3.3 Barium Titanate BaTiO3 3.4 Bismuth Ferrite BiFeO3 3.5 Heterostructures Based on BiFeO3 4 Experimental Section 4.1 Thin Film Fabrication 4.2 X–Ray Diffraction 4.3 Microscopic Techniques 4.4 Chemical Analysis Techniques 4.5 Ferroelectric Characterization 4.6 Magnetic Property Measurements 4.7 Measurement of the Magnetoelectric Coupling Coefficient 5 BaTiO3–BiFeO3 Heterostructures 5.1 General Properties of Single-Layers and Multilayers of BTO and BFO 5.2 PLD–Growth of BaTiO3–BiFeO3 Multilayers 5.3 Manipulation of Multilayer Properties through Design 5.4 Effectiveness of Eclipse–PLD 5.5 Enhanced ME Effect in BaTiO3–BiFeO3 Multilayers 6 Summary and Outlook A Magnetoelectric Measurement Setup B Magnetic Background Measurements C Polarized Neutron Reflectometry Literature Own and Contributed Work Acknowledgement Erratum
3

Couplages magnéto-électriques dans le système multiferroïque artificiel : BaTiO₃ / CoFe₂O₄ / Magnetoelectric coupling in the artificial multiferroic system : BaTiO₃ / CoFe₂O₄

Aghavnian, Thomas 03 October 2016 (has links)
Les matériaux magnetoélectriques multiferroïques sont particulièrement attrayants dans le domaine de l’électronique de spin, notamment dans la perspective de contrôler l’aimantation d’un matériau à partir d’un champ électrique. Les multiferroïques dits artificiels, constitués de phases ferroélectriques et magnétiques séparées, permettent de contourner la rareté de matériaux multiferroïques intrinsèques. S’ils peuvent présenter des valeurs de couplage plus élevées les mécanismes en jeu sont encore mal compris. Leur compréhension requiert l’étude d’échantillons parfaitement cristallisés et maitrisés. L’association en films minces (entre 3 et 20nm) épitaxiés de BaTiO₃, ferroélectrique de référence et de CoFe₂O₄, ferrimagnétique très magnétostrictif et à haute température de Curie, constitue un système modèle bien adapté à une telle étude. Dans cette thèse, nous réalisons des films minces de grande qualité cristalline de CoFe₂O₄ / BaTiO₃ sur substrat SrTiO₃ (001) par épitaxie par jets moléculaires sous plasma d’oxygène atomique. Dans un premier temps, nous étudions indépendamment pour chaque phase les propriétés individuelles de chimie, structure, magnétisme et ferroélectricité, notamment via des techniques de synchrotron. Forts de cette base, nous mettons en place différentes expériences d’étude du couplage magnétoélectrique direct et indirect, avec l’application d’une polarisation électrique et une mesure d’aimantation, et vice versa. Nous observons l’existence d’un couplage magnétoélectrique, notamment grâce la forte interaction des couches de CoFe₂O₄ et BaTiO₃. En revanche, les mécanismes indirects dominent, et impliquent des modifications structurales et chimiques via des mouvements ioniques. Ces mécanismes ioniques créent des modifications réversibles de résistance à température ambiante ouvrant la voie, au-delà des propriétés multiferroïques, à de possibles applications pour les RAM résistives. / Magnetoelectric multiferroics are of particular interest in the field of spintronics, especially for the possible control of the magnetization using an electric field. The lack of intrinsic multiferroics can be circumvented by using artificial multiferroics, made with individual ferroelectric and magnetic phases. Although they may exhibit higher coupling values, the precise coupling mechanisms involved are still not well understood. Getting insights in the understanding of these phenomena requires studying well mastered and crystallized samples. The combination of BaTiO₃ thin films (3 to 20nm), the prototypical ferroelectric, and of CoFe₂O₄ ones, a highly magnetostrictive ferromagnet with a high Curie temperature, constitutes a suitable model system well suited for such a study. In this thesis, we realized CoFe₂O₄ / BaTiO₃ thin films of high crystalline quality by oxygen plasma assisted molecular beam epitaxy on a SrTiO₃ (001) substrates. First, we study independently for each phase the individual properties of chemistry, structure, magnetism and ferroelectricity, using in particular a range of synchrotron techniques. Based on those fundamental results, we set up direct and indirect magnetoelectric coupling experiments, where we apply an electric polarization to measure a change in magnetization, and vice versa. We manage to observe the magnetoelectric coupling, mainly through the strong interaction of the CoFe₂O₄ and BaTiO₃ films. The indirect mechanisms dominate however and involve structural as well as chemical modifications through ion displacement. Those ion displacements create reversible changes in resistance at room temperature. These results imply that, in addition to the evidenced multiferroic properties, the system makes also promise for resistive RAM devices applications.
4

Métallophosphates bidimensionnels luminescents et magnétiques : relation structure-propriétés / Luminescent and magnetic two-dimensional metal phosphonates : structure-properties relationships

Bloyet, Clarisse 16 November 2018 (has links)
Ce travail de thèse concerne l’étude de nouveaux matériaux hybrides organiques-inorganiques lamellaires magnétiques et luminescents synthétisés par voie hydrothermale. Ces matériaux ont été obtenus à partir de sels de métaux de transition de configuration électronique 3d (Cu2+, Co2+, Mn2+, Zn2+) et de molécules organiques de basse symétrie constituées d’au moins un acide phosphonique greffé sur une plateforme rigide aromatique (phényle ou naphtalène). Le choix du cation métallique ainsi que l’ajout d’autres fonctions (halogène : F, Cl, Br, I, acide carboxylique ou méthyle) sur ces systèmes cycliques ont conduit à des matériaux hybrides bidimensionnels aux architectures et propriétés physiques (luminescence, magnétisme et/ou couplage magnétoélectrique) diverses. La compréhension du lien entre les propriétés structurales et physiques de ces métallophosphonates ouvre la voie vers la conception de nouveaux matériaux multifonctionnels originaux. / This PhD work deals with the study of new lamellar magnetic and luminescent organic-inorganic hybrid materials synthesized by hydrothermal process. These materials were obtained from 3d transition metal salts (Cu2+, Co2+, Mn2+, Zn2+) and low symmetric organic molecules bearing at least one phosphonic acid function grafted onto a rigid aromatic platform (phenyl or naphthalene). The choice of the metal cation as well as additional functions (halogen: F, Cl, Br, I, carboxylic acid or methyl) on these cyclic systems led to two-dimensional hybrid materials with various architectures and physical properties (luminescence, magnetism and/or magnetoelectric coupling). Understanding the interconnections between the structural and physical properties of these metal phosphonates paves the way for the design of novel multifunctional materials.
5

Multifunctional layered simple hydroxides : structural investigations, functionalization and properties / Hydroxydes simples lamellaires multifonctionnels : investigations structurales, fonctionnalisations et propriétés

Evrard, Quentin 12 December 2017 (has links)
Le but de cette thèse est l’obtention de matériaux multiferroïques par l’insertion de molécules organiques dans une matrice magnétique d’hydroxide simple lamellaire. Durant cette thèse a été démontré la faisabilité de la fonctionnalisation d’hydroxides simples lamellaires de cuivre et de cobalt par des molécules possédant des fonctions d’accroche acide phosphonique. Le développement des techniques de pré-fonctionnalisation a permis de fonctionnaliser ces hydroxides simple lamellaire par une variété importantes de molécules (fluorènes, benzènes, thiophènes et complexes de métaux de transition) afin d’apporter une propriété additionnelle au magnétisme de l’hydroxyde. Les premières mesures ont permis de mettre en évidence un couplage entre temperature d’ordre magnétique et anomalie diélectrique. La complexité de la mesure des propriétés diélectriques avec ces échantillons (sur poudre pastillées à froid) ont mis en lumière la nécessité d’obtenir des tailles de cristallites plus importantes. Des efforts sur la taille des cristallites ont donc été effectués et ont permis d’obtenir des monocristaux d’hydroxy- dodecylsulfate de cuivre. / The main goal of this thesis is to obtain multiferroic materials via the intercalation of organic molecules in a magnetic inorganic matrix made of layered simple hydroxide. The possibility to use phosphonic acid as grafting moiety for the functionalization of layered simple hydroxides has been demonstrated during this thesis. Pre-functionalization techniques has allowed the functionalization of layered simple hydroxides of copper and cobalt with a wide variety of molecules (fluorenes, benzenes, thiophenes or transition- metal complexes) to bring an additional property to the magnetic properties of the layered hydroxide. The first measurements revealed a coupling between magnetic ordering temperature and dielectric anomaly. The dielectric properties measurements proved to be difficult with the samples (on cold-pressed pellets) and shown the usefulness of developing new methods to improve the cristallite size. To that end, new syntheses procedures led to the obtention of mono crystals of copper-hydroxidodecylsulfonate allowing to get additional structural informations.
6

Matériaux multiferroïques : structure, ordres et couplages. Une étude par spectroscopie Raman / Multiferroic materials : structure, multiferroic orders and couplings. A Raman spectroscopy study

Toulouse, Constance 14 June 2016 (has links)
Les matériaux multiferroïques sont des matériaux dans lesquels des ordres magnétiques, électriques et élastiques peuvent coexister dans une même phase. Ces ordres peuvent être couplés entre eux et l’étude de ces couplages permet de mieux comprendre les mécanismes à l’œuvre dans ces matériaux. Cette thèse porte sur l’étude de différents composés multiferroïques par spectroscopie Raman. Dans la ferrite de bismuth (BiFeO₃), l'effet de la contrainte sur le magnétisme, aussi bien sur les films minces (par contrainte épitaxiale) que le bulk (par pression hydrostatique) est étudié en détail. Cette thèse présente également une étude des excitations hybrides magnéto-électriques (électromagnons) dans les composés de type II à forte polarisation ferroélectrique comme CaMn₇O₁₂ et TbMnO₃. En outre, les modes de phonons ainsi que les excitations de basses énergies ont été étudiés (notamment sous champ magnétique) dans des composés au magnétisme frustré comme h-YMnO₃, h-YbMnO₃ et dans le langasite de fer au niobium. / Multiferroics are materials in which magnetic, electric and elastic orders can coexist in the same phase. These orders can be coupled to each other and their study of high interest to understand the mecanisms at stake in the multiferroic materials. This PhD thesis has been focused on the study of several multiferroic compounds by the mean of Raman spectroscopy. In bismuth ferrite (BiFeO₃), the effect of strain on the magnetic order, both on thin films (epitaxial strain) and single crystals (hydrostatic pressure), has been thoroughly investigated. This thesis also focuses on the study of hybrid magneto-electric excitations (electromagnons) in type II multiferroic compounds with strong ferroelectric polarizations such as CaMn₇O₁₂ and TbMnO₃. Furthermore, phonons modes and of low energy excitations have been measured and studied (especially under magnetic field) in compounds with frustrated magnetic orders such as h-YMnO₃, h-YbMnO₃ and in the niobium iron langasite (Ba₃NbFe₃Si₂O₁₄).
7

Electric, Magnetic and Magnetocaloric Studies of Magnetoelectric GdMnO3 and Gd0.5Sr0.5MnO3 Single Crystals

Wagh, Aditya A January 2014 (has links) (PDF)
After the prediction of magnetoelectric effect in Cr2O3, in early 1960's, D. Asrov became the first to experimentally verify this phenomenon. After the pioneering work on magnetoelectric materials in 1960's and 1970's, the discovery of large magnetoelectric effect in orthorhombic rare-earth manganite TbMnO3 has revived great interest in magnetoelectric materials, especially during the last decade. Magnetoelectric multiferroics have great potential in applications such as novel memory storage devices and sensors. As a result of extensive theoretical and experimental investigations conducted on rare-earth magnetoelectric manganites, TbMnO3 has become a prototype magnetoelectric multiferroic material. Orthorhombic rare-earth manganites RMnO3 (R = Gd, Tb and Dy) exhibit improper ferroelectricity where the origin of ferroelectricity is purely magnetic in nature. RMnO3 exhibit diverse and complex magnetic interactions and phases. Doped manganites of the type R1-xAxMnO3 (A = Ca, Sr and Ba) present a rich magnetic and electronic phase diagram. The doping concentration, average ion-size and size mismatch (i.e. disor-der) at A-site, all contribute to determine the ground state. A variety of magnetic phases, competing with each other, are responsible for many functional properties like magnetoelectric effect, colossal magnetoresistance (CMR), magnetostriction and magnetocaloric effect (MCE). In this context, studies of magnetoelectric materials are of great relevance from technical as well as fundamental aspects. Notably, complexity of electronic (and magnetic) phases and experimental difficulties in acquiring reliable measurement-data easily are the most concerning issues in establishing a clear understanding of magnetoelectric materials. In the magnetic phase diagram of RMnO3, GdMnO3 lies on the border between A-type antiferromagnetic and cycloidal antiferromagnetic ground states. Cycloidal spin arrangement is responsible for the induction of ferroelectricity in these materials. There are disparate opinions about the ground state of GdMnO3 (whether the ground state is ferroelectric or not). Understanding of the influence of rare-earth magnetic sublattice on magnetism in GdMnO3 (at low temperature) lacks clarity till date. Neutron scattering studies on GdMnO3 due to high absorption cross-section of Gd ion, yield little success in determining the nature of complex magnetic phases in this material. Interestingly, an earlier report on strontium-substituted gadolinium manganite Gd0.5Sr0.5MnO3 demonstrated the spontaneous electric polarization and related magnetoelectric effect. It was hypothesized that the observed ferroelectricity could be improper and electronic in nature. Strontium doping facilitates quenched disorder that leads to interesting magnetic phases and phase transitions. In order to understand the physical properties of gadolinium manganites and to unravel the relationship between them, it is essential to investigate high quality single crystals of these materials. This thesis deals with growth and investigation of several important physical phenomena of gadolinium manganites such as magnetic, electric, magnetoelectric and magnetocaloric properties. The thesis is organized in seven chapters. A brief summary of each chapter follows: Chapter:1 This chapter provides general introduction to magnetoelectric effect and multiferroicity. The term multiferroicity refers to simultaneous existence of magnetic and electric ordering in a single phase material. Magnetoelectric multiferroics have shown great potential for several applications. They exhibit cross coupling between the electronic and magnetic order parameters, hence basics of various magnetic interactions (and magnetism) are brie y discussed in the rst section of the chapter. It is followed by a brief discussion about the principle of magnetoelectric effect. Magnetoelctric coupling is broadly classified into two types namely, direct coupling and indirect coupling. In the former, the emphasis is given on linear magnetoelectric effect. The concept of multiferroicity is introduced in the next section followed by a brief overview and application potential of multiferroics. Further, classi cation scheme of multiferroic materials is discussed. The concept of improper ferroelectricity and description of subcategories namely, magnetic ferroelectric, geometric ferroelectric and electronic ferroelectric are documented. Magnetic ferroelectric category is considered the most relevant; featuring the type of ferroelectric material as GdMnO3 referred in this thesis. The microscopic theory for mechanism of ferroelectricity in spiral antiferromagnets is presented. While brie ng the thermodynamic background of the magnetocaloric effect, indirect estimation of two important characteristics namely, isothermal magnetic entropy change (∆SM ) and adiabatic change in temperature (∆Tad) under the application of magnetic field are dealt with. In the last part of the chapter, motivation and scope of the thesis is discussed. Chapter:2 This chapter outlines various experimental methodologies adopted in this work. It describes the basic principles of various experimental techniques and related experimental apparatuses used. The chapter starts with the synthesis tech-niques used in the preparation of different compounds studied. The principle of oat-zone method, employed for single-crystal growth, is described. Orientation of single crystals was determined using a home-built back- reflection Laue set up. The basics of Laue reflection and indexing procedure for recorded Laue photographs are described. Various physical properties (electric, magnetic, thermal, magnetoelectric and magnetocaloric properties) were studied using commercial as well as home-built experimental apparatuses. Design and working principle of all the experimental tools are outlined in this chapter. Fabrication details, interfacing of measurement instruments and calibration (standardization) of equipment used in this work are described in appropriate sections. Chapter:3 Chapter-3 describes the investigation of various physical properties of high quality single crystals of magnetoelectric multiferroics, GdMnO3. Synthesis of GdMnO3 is carried out using solid state synthesis route. Single phase nature of the material is confirmed by X-ray powder diffraction technique. Single crystals of GdMnO3 are grown in argon ambience using oat-zone method. As grown crystals are oriented with the help of back-reflection Laue method. GdMnO3 exhibits incommensurate collinear antiferromagnetic phase below 42 K and transforms to canted A-type antiferromagnetic phase below 23 K. Magnetic and specific heat studies have revealed very sharp features near the magnetic transitions which also confirm the high quality of the single crystal. dc magnetization studies illustrate the anisotropic behavior in canted A-type antiferromagnetic phase and clarifies the influence of rare-earth magnetic sub-lattice on overall magnetism (at low temperature). Application of magnetic field (above 10 kOe) along `b' axis helps formation of the cycloidal antiferromagnetic phase. Here, spontaneous electric polarization is induced along `a' axis. The temperature variation plot of dielectric constant, ϵa (under ap- plied magnetic field along `b' axis) shows sharp anomalies in the vicinity of magnetic ordering transitions suggesting magnetodielectric effects. Magnetic field tuning of electric polarization establish the magnetoelectric nature of GdMnO3. Magnetocaloric properties of single crystals of GdMnO3 are investigated using magnetic and magnetothermal measurements. The magnitude of the giant magnetocaloric effect observed is compared with that of other rare-earth manganite multiferroics. Magnetocaloric studies shed light on magnetic ordering of rare-earth ion Gd3+. The phenomenon of inverse magnetocaloric effect observed at low temperature and under low fields is possibly linked to the ordering of Gd3+ spins. Complex interactions between the 3d and 4f magnetic sublattices are believed to influence magnetocaloric properties. Chapter:4 The details of synthesis and single crystal growth of Gd0.5Sr0.5MnO3 using oat-zone method are presented in Chapter 4. Single phase nature of the material is veri ed by carrying out powder x-ray diffraction analysis and confirmation of single crystallinity and orientation through back-reflection Laue method. Electric transport studies reveal semiconductor-like nature of Gd0.5Sr0.5MnO3 until the lowest temperature achieved. This is due to charge localization process which occurs concurrently with decrease in temperature. Gd0.5Sr0.5MnO3 exhibits charge-ordered insulator (COI) phase below 90 K (ac-cording to an earlier report). It is found that under application of magnetic field above a critical value, charge ordering melts and the phase transforms to ferromagnetic metallic (FMM) phase. This transformation is first-order in nature with associated CMR (109%). The first-order phase transition (FOPT) occurs between competing COI and FMM phases and manifests as hysteresis across the FOPT. Strontium doping at A-site induces a large size mismatch at A-site resulting in high quenched disorder in Gd0.5Sr0.5MnO3. The disorder plays a significant role in CMR as well as glass-like dynamics within the low-temperature magnetic phase. ac susceptibility studies and dynamic scaling analysis reveal very slow dynamics inside the low-temperature magnetic phase (below 32 K). According to an earlier report, spontaneous electric polarization and magnetoelectric effect were pronounced near FOPT (at 4.5 K and 100 kOe) between COI and FMM phases. It is prudent to investigate FOPT across COI and FMM phases in Gd0.5Sr0.5MnO3 to understand complex magnetic phases present. Thermodynamic limits of the FOPT (in magnetic field - temperature (H-T) plane), such as supercooling and superheating, are experimentally determined from magnetization and magnetotransport measurements. Interestingly, thermomagnetic anomalies such as open hysteresis loops are observed while traversing the FOPT isothermally or isomagnetically in the H-T plane. These anomalies point towards incomplete phase transformation while crossing the FOPT. Phenomenological model of kinetic arrest is invoked to understand these anomalies. The model put for-ward the idea that while cooling across the FOPT, extraction of specific heat is easier than that of latent heat. In other words, phase transformation across FOPT is thermodynamically allowed but kinetics becomes very slow and phase transformation does not occur at the conventional experimental time scale. Magnetization relaxation measurements (at 89 kOe) with field-cooled magnetization protocol reveal that the relaxation time constant rst decreases with temperature and later, increases non-monotonically below 30 K. This qualita-tive behavior indicates glass-like arrest of the FOPT. Further, thermal cycling studies of zero field-cooled (ZFC) and eld-cooled (FC) magnetization indicate that a low temperature phase prepared with ZFC and FC protocols (at 89 kOe) is not at equilibrium. This confirms the kinetic arrest of FOPT and formation of magnetic phase similar to glass. Chapter:5 Chapter-5 deals with the investigation of the effect of an electric field on charge ordered phase in Gd0.5Sr0.5MnO3 single crystals. As discussed in the previous chapter, application of magnetic field above a critical value collapses the charge ordered phase which transforms to FMM phase. In this view, it is interesting to investigate effect of electric field on the charge ordering. There are various reports on doped manganites such as Pr1-xCaxMnO3 (x = 0:3 to 0:4) that claim melting of charge ordering under application of electric field (or current) above a critical value. In this thesis work, current - voltage (I - V) characteristics of Gd0.5Sr0.5MnO3 are studied at various constant temperatures. Preliminary measurements show that the I-V characteristics are highly non-linear and are accompanied by the onset of negative differential resistance (NDR) above a critical current value. However, we suspect a major contribution of Joule heating in realization of the NDR. Continual I - V loop measurements for five loops revealed thermal drag and that the onset of NDR shifts systematically towards high current values until it disappeared in the current window. Two strategies were employed to investigate the role of Joule heating in realization of NDR: 1) monitoring the sample surface temperature during electric transport measurement and 2) reducing of the Joule heating in a controlled manner by using pulsed current I - V measuremenets. By tuning the duty cycle of the current pulses (or in other words, by controlling the Joule heating in the sample), it was feasible to shift the onset of NDR to any desired value of the current. At low magnitude of the duty cycle in the current range upto 40 mA, the NDR phenomenon did not occur. These experiments concluded that the NDR in Gd0.5Sr0.5MnO3 is a consequence of the Joule heating. Chapter:6 `Chapter-6 deals with the thermal and magnetocaloric properties of Gd0.5Sr0.5MnO3 oriented single crystals. Magnetocaloric properties of Gd0.5Sr0.5MnO3 have been studied using magnetic and magnetothermal measurements. Tempera-ture variation of ∆SM is estimated for magnetic field change of 0 - 70 kOe. The eld 70 kOe is well below the critical magnetic eld required for FOPT between COI and FMM phases. Magnetzation - field (M-H) loop shows minimal hysteresis for measurements up to 70 kOe. The minimal hysteresis behavior al-lows one to make fairly accurate estimation of magnetocaloric properties. ∆Tad was separately estimated from specific heat measurements at different magnetic fields. Specific heat studies show the presence of Schottky-like anomaly at low temperature. Chapter:7 Finally, Chapter-7 summarizes various experimental results, analyses and conclusions. A broad outlook of the work in general with future scope of research in this area are outlined in this chapter.

Page generated in 0.1077 seconds