• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetization processes and the magnetomechanical properties of Terfenol

Kendall, Danny January 1991 (has links)
No description available.
2

Static and Dynamic Delta E Effect in Magnetostrictive Materials with Application to Electrically-Tunable Vibration Control Devices

Scheidler, Justin Jon 18 September 2015 (has links)
No description available.
3

Nonlinear Magnetomechanical Modeling and Characterization of Galfenol and System-Level Modeling of Galfenol-Based Transducers

Evans, Phillip G. January 2009 (has links)
No description available.
4

Caractérisation et modélisation d'un micro-capteur magnétoélectrique / Characterization and Modeling of Magnetoelectric Micro Sensors

Nguyen, Thi Ngoc 06 July 2018 (has links)
Les capteurs magnéto-électrique (ME) sont une alternative prometteuse pour mesurer de faibles signaux magnétiques. Précédemment le choix était généralement de déposer des couches minces magnétostrictives sur un matériau piézoélectrique massif conduisant à des systèmes macroscopiques de taille milllimétrique. L’intégration de ces systèmes dans des MEMS (micro-electro-mechanical systems) requiertà la fois de résoudre les problèmes d’intégration de matériaux actif sur silicium, et de mesurer des petits signaux étant donné l’importante réduction de la réponse du système lorsqu’il est miniaturisé.Dans cette optique, le premier objectif de ce travail de thèse a été d’intégrer un matériau piézoélectrique sur un substrat de silicium tout en conservant une excellente qualité cristalline. Pb(Zr ₀ , ₅ ₂Ti ₀ ,₄₈)O₃ (PZT) a été retenu pour ces excellente propriétés piézoélectriques. L’intégration de la couche mince ce fait sur silicium qui est le substrat de prédilection pour la fabrication de microsystèmes avec les procédés microélectroniques standards. La qualité cristalline des matériaux actifs est directement corrélée aux couches d'adaptation utilisées pour obtenir une bonne qualité cristalline sur silicium. Pour cel l'intégration d'une tricouche composée de zircone stabilisée à l'yttrium (YSZ), d'oxyde de cérium (CeO₂) et de SrTiO₃ permet ensuitela croissance des pérovskites d'intérêt pour le dispositif. Le choix de l’électrode conductrice inférieure (SrRuO₃ ou La ₀ ,₆₆Sr₀₃₃MnO₃ dans le cas présent) permet de contrôler l’orientation de la maille de PZT.Une première étude des propriétés piézoélectriques de la couche mince de PZT sous la forme d’une poutre libre pour son intégration dans un système magnétoélectrique a été réalisé. La mesure de la déformation de la poutre induite par l'application d'une tension électrique permet d'extraire un coefficient d₃₁ de -53pmV⁻¹, valeur inférieure au matériau massif mais à l'état de l'art dans ce type de dispositif. Dans une seconde étape, l’utilisation de la poutre comme résonateur à été étudiée. L’étude dynamique du système a permis d'obtenir la fréquence de résonance et le facteur de qualité. Le déplacement de la fréquence caractéristique du système en fonction d'une contrainte induite par une tension DC a été investigué. Enfin, l'ajout d'une couche de matériau magnétostrictif (TbFeCo) sur la poutre a finalisé la structure du capteur. Le capteur ainsi obtenu a été caractérisé et une sensibilité d’une dizaine de micro Tesla a été obtenue. / Magneto-electric (ME) sensors have been demonstrated as a promising alternative for the detection of weak magnetic signals with high sensitivity. To date, most applications focused on the use of bulk piezoelectric materials on which magnetostrictive thin films are deposited leading to millimeter-sized devices. The integration of such devices into micro-electro-mechanical systems (MEMS), bringing smaller size and lower power consumption, involves addressing several scientific issues ranging from the integration of active materials on silicon to the strong reduction in amplitude of generated signals related to the size reduction of the sensor.In this context, the first goal of this thesis work was to integrate high crystalline quality piezoelectric thin films on silicon.Pb(Zr ₓTi ₁ ₋₁)O₃ (PZT) with a morphotropic composition (x=0.52) having high electromechanical coupling factor was chosen. Silicon is a necessary template as it allows for the use of conventional clean room processes for the realization of the microsystem. The crystalline quality of the active films is directly linked to the buffer layers that promote the crystalline growth on silicon. For this purpose, Yttria-stabilized Zirconia (YSZ) was used in combination with CeO₂ and SrTiO₃ to allow further growth of epitaxial perovskites. The choice of the bottom electrode material (SrRuO₃ or La ₀ ,₆₆Sr₀₃₃MnO₃ in this work) further tunes the crystalline orientation of the PZT layer.To probe the potential of such PZT thin films for ME devices, the first step was to characterize the electromechanical properties of this material in a free standing cantilever structure. Under an applied electric field, the measured displacement of the epitaxial PZT-based cantilevers is characterized by a coefficient d₃₁ =-53pmV⁻¹ , a reduced value with respect to the bulk material but that can be enhanced by further optimizing the film growth. The second step consists in ascertaining the ability of the cantilever to be used as resonator. For that purpose, first characterizations of oscillators have been performed to extract the resonant frequencies and the associated quality factors. Then, the resonant frequency shift with DC bias-induced stress was measured. Finally, a magnetostrictive layer of TbFeCo was added on the PZT cantilevers to sense magnetic field based on the ME effect. The resulting resonant frequency shift with external applied magnetic field was characterized with a typical sensitivity of 10’s of µT.
5

Structural Health Monitoring Of Composite Structures Using Magnetostrictive Sensors And Actuators

Ghosh, Debiprasad 01 1900 (has links)
Fiber reinforced composite materials are widely used in aerospace, mechanical, civil and other industries because of their high strength-to-weight and stiffness-to-weight ratios. However, composite structures are highly prone to impact damage. Possible types of defect or damage in composite include matrix cracking, fiber breakage, and delamination between plies. In addition, delamination in a laminated composite is usually invisible. It is very diffcult to detect it while the component is in service and this will eventually lead to catastrophic failure of the structure. Such damages may be caused by dropped tools and ground handling equipments. Damage in a composite structure normally starts as a tiny speckle and gradually grows with the increase in load to some degree. However, when such damage reaches a threshold level, serious accident can occur. Hence, it is important to have up-to-date information on the integrity of the structure to ensure the safety and reliability of composite components, which require frequent inspections to identify and quantify damage that might have occurred even during manufacturing, transportation or storage. How to identify a damage using the obtained information from a damaged composite structure is one of the most pivotal research objectives. Various forms of structural damage cause variations in structural mechanical characteristics, and this property is extensively employed for damage detection. Existing traditional non-destructive inspection techniques utilize a variety of methods such as acoustic emission, C-scan, thermography, shearography and Moir interferometry etc. Each of these techniques is limited in accuracy and applicability. Most of these methods require access to the structure.They also require a significant amount of equipment and expertise to perform inspection. The inspections are typically based on a schedule rather than based on the condition of the structure. Furthermore, the cost associated with these traditional non-destructive techniques can be rather prohibitive. Therefore, there is a need to develop a cost-effective, in-service, diagnostic system for monitoring structural integrity in composite structures. Structural health monitoring techniques based on dynamic response is being used for several years. Changes in lower natural frequencies and mode shapes with their special derivatives or stiffness/ exibility calculation from the measured displacement mode shapes are the most common parameters used in identification of damage. But the sensitivity of these parameters for incipient damage is not satisfactory. On the other hand, for in service structural health monitoring, direct use of structural response histories are more suitable. However, they are very few works reported in the literature on these aspects, especially for composite structures, where higher order modes are the ones that get normally excited due to the presence of flaws. Due to the absence of suitable direct procedure, damage identification from response histories needs inverse mapping; like artificial neural network. But, the main diffculty in such mapping using whole response histories is its high dimensionality. Different general purpose dimension reduction procedures; like principle component analysis or indepen- dent component analysis are available in the literature. As these dimensionally reduced spaces may loose the output uniqueness, which is an essential requirement for neural network mapping, suitable algorithms for extraction of damage signature from these re- sponse histories are not available. Alternatively, fusion of trained networks for different partitioning of the damage space or different number of dimension reduction technique, can overcome this issue efficiently. In addition, coordination of different networks trained with different partitioning for training and testing samples, training algorithms, initial conditions, learning and momentum rates, architectures and sequence of training etc., are some of the factors that improves the mapping efficiency of the networks. The applications of smart materials have drawn much attention in aerospace, civil, mechanical and even bioengineering. The emerging field of smart composite structures offers the promise of truly integrated health and usage monitoring, where a structure can sense and adapt to their environment, loading conditions and operational requirements, and materials can self-repair when damaged. The concept of structural health monitoring using smart materials relies on a network of sensors and actuators integrated with the structure. This area shows great promise as it will be possible to monitor the structural condition of a structure, throughout its service lifetime. Integrating intelligence into the structures using such networks is an interesting field of research in recent years. Some materials that are being used for this purpose include piezoelectric, magnetostrictive and fiber-optic sensors. Structural health monitoring using, piezoelectric or fiber-optic sensors are available in the literature. However, very few works have been reported in the literature on the use of magnetostrictive materials, especially for composite structures. Non contact sensing and actuation with high coupling factor, along with other prop- erties such as large bandwidth and less voltage requirement, make magnetostrictive materials increasingly popular as potential candidates for sensors and actuators in structural health monitoring. Constitutive relationships of magnetostrictive material are represented through two equations, one for actuation and other for sensing, both of which are coupled through magneto-mechanical coefficient. In existing finite element formulation, both the equations are decoupled assuming magnetic field as proportional to the applied current. This assumption neglects the stiffness contribution coming from the coupling between mechanical and magnetic domains, which can cause the response to deviate from the time response. In addition, due to different fabrication and curing difficulties, the actual properties of this material such as magneto-mechanical coupling coefficient or elastic modulus, may differ from results measured at laboratory conditions. Hence, identification of the material properties of these embedded sensor and actuator are essential at their in-situ condition. Although, finite element method still remains most versatile, accurate and generally applicable technique for numerical analysis, the method is computationally expensive for wave propagation analysis of large structures. This is because for accurate prediction, the finite element size should be of the order of the wavelength, which is very small due to high frequency loading. Even in health monitoring studies, when the flaw sizes are very small (of the order of few hundred microns), only higher order modes will get affected. This essentially leads to wave propagation problem. The requirement of cost-effective computation of wave propagation brings us to the necessity of spectral finite element method, which is suitable for the study of wave propagation problems. By virtue of its domain transfer formulation, it bypasses the large system size of finite element method. Further, inverse problem such as force identification problem can be performed most conveniently and efficiently, compared to any other existing methods. In addition, spectral element approach helps us to perform force identification directly from the response histories measured in the sensor. The spectral finite element is used widely for both elementary and higher order one or two dimensional waveguides. Higher order waveguides, normally gives a behavior, where a damping mode (evanescent) will start propagating beyond a certain frequency called the cut-off frequency. Hence, when the loading frequencies are much beyond their corresponding cut-off frequencies, higher order mo des start propagating along the structure and should be considered in the analysis of wave propagations. Based on these considerations, three main goals are identified to be pursued in this thesis. The first is to develop the constitutive relationship for magnetostrictive sensor and actuator suitable for structural analysis. The second is the development of different numerical tools for the modelling the damages. The third is the application of these developed elements towards solving inverse problems such as, material property identification, impact force identification, detection and identification of delamination in composite structure. The thesis consists of four parts spread over six chapters. In the first part, linear, nonlinear, coupled and uncoupled constitutive relationships of magnetostrictive materials are studied and the elastic modulus and magnetostrictive constant are evaluated from the experimental results reported in the literature. In uncoupled model, magnetic field for actuator is considered as coil constant times coil current. The coupled model is studied without assuming any explicit direct relationship with magnetic field. In linear coupled model, the elastic modulus, the permeability and magnetostrictive coupling are assumed as constant. In nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and mechanical domain using two nonlinear curves,’ namely the stress vs. strain curve and magnetic flux density vs. magnetic field curve. This is done by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, artificial neural network is used, where a trained network gives the necessary strain and magnetic flux density for a given magnetic field and stress level. In the second part, different finite element formulations for composite structures with embedded magnetostrictive patches, which can act both as sensors and actuators, is studied. Both mechanical and magnetic degrees of freedoms are considered in the formulation. One, two and three-dimensional finite element formulations for both coupled and uncoupled analysis is developed. These developed elements are then used to identify the errors in the overall response of the structure due to uncoupled assumption of the magnetostrictive patches and shown that this error is comparable with the sensitivity of the response due to different damage scenarios. These studies clearly bring out the requirement of coupled analysis for structural health monitoring when magnetostrictive sensor and actuator are used. For the specific cases of beam elements, super convergent finite element formulation for composite beam with embedded magnetostrictive patches is introduced for their specific advantages in having superior convergence and in addition, these elements are free from shear locking. A refined 2-node beam element is derived based on classical and first order shear deformation theory for axial-flexural-shear coupled deformation in asymmetrically stacked laminated composite beams with magnetostrictive patches. The element has an exact shape function matrix, which is derived by exactly solving the static part of the governing equations of motion, where a general ply stacking is considered. This makes the element super convergent for static analysis. The formulated consistent mass matrix, however, is approximate. Since the stiffness is exactly represented, the formulated element predicts natural frequency to greater level of accuracy with smaller discretization compared to other conventional finite elements. Finally, these elements are used for material property identification in conjunction with artificial neural network. In the third part, frequency domain analysis is performed using spectrally formulated beam elements. The formulated elements consider deformation due to both shear and lateral contraction, and numerical experiments are performed to highlight the higher order effects, especially at high frequencies. Spectral element is developed for modelling wave propagation in composite laminate in the presence of magnetostrictive patches. The element, by virtue of its frequency domain formulation, can analyze very large domain with nominal cost of computation and is suitable for studying wave propagation through composite materials. Further more, identification of impact force is performed form the magnetostrictive sensor response histories using these spectral elements. In the last part, different numerical examples for structural health monitoring are directed towards studying the responses due to the presence of the delamination in the structure; and the identification of the delamination from these responses using artificial neural network. Neural network is applied to get structural damage status from the finite element response using its mapping feature, which requires output uniqueness. To overcome the loss of output uniqueness due to the dimension reduction, damage space is divided into different overlapped zones and then different networks are trained for these zones. Committee machine is used to co ordinate among these networks. Next, a five-stage hierarchy of networks is used to consider partitioning of damage space, where different dimension reduction algorithms and different partitioning between training and testing samples are used for better mapping fro the identification procedure. The results of delamination detection for composite laminate show that the method developed in this thesis can be applied to structural damage detection and health monitoring for various industrial structures. This thesis collectively addresses all aspects pertaining to the solution of inverse problem and specially the health monitoring of composite structures using magnetostric tive sensor and actuator. In addition, the thesis discusses the necessity of higher order theory in the high frequency analysis of wavw propagation. The thesis ends with brief summary of the tasks accomplished, significant contribution made to the literature and the future applications where the proposed methods addressed in this thesis can be applied.
6

Structure, Microstructure and Magnetic Properties of Fe-Ga and R-Fe based Magnetostrictive Thin Films

Basumatary, Himalay January 2016 (has links) (PDF)
Magnetostrictive materials belong to an important class of smart magnetic materials which have potential applications as ultrasonic transducers, sensors, actuators, delay lines, energy harvesting devices etc. Although, magnetostrictive property is exhibited by almost all ferro and ferrimagnetic materials, the R-Fe type (R represents rare earth elements) intermetallic compounds display maximum promise owing to the large magnetostriction exhibited by them at ambient temperature. Among the several R-Fe type compounds, Tb-Fe and Sm-Fe alloys are found to exhibit maximum room temperature positive and negative magnetostriction respectively. Recently, Fe-Ga based alloys have gained significant interest as newly emerging magnetostrictive material due to a good combination of magnetic and mechanical properties. These magnetostrictive materials in thin film form are of interests for several researchers both from fundamental and applied perspectives. Currently, many researchers are exploring the possibility of using magnetostrictive thin films in micro- and nano-electromechanical systems (MEMS and NEMS). Three material systems viz. Fe-Ga, Tb-Fe and Sm-Fe in thin film form have been chosen for our investigations. DC magnetron sputtering and e-beam evaporation techniques were used for deposition of these thin films on Si (100) substrates. Several aspects such as evolution of microstructure, film surface morphology, structure and change in film composition with different processing conditions were investigated in detail, as the existing literature could not provide a clear insight. Further, detailed magnetic characterizations of these films were carried out and established a process-structure-property correlation. The thesis is divided into seven chapters. The first chapter presents a brief introduction of magnetostrictive phenomena and the physics behind its origin. A brief history of evolution of magnetostrictive materials with superior properties is also brought out. Introduction to the material systems considered for the present study has also been presented. Discussions on various aspects like crystal structures, magnetic properties, and phase diagrams of these material systems are also included in this chapter. Magnetostriction in thin films and its importance in current technological applications are discussed in short. Further, a summary of existing literature on thin films of these materials has been narrated to highlight the perspective of the work done in subsequent chapters. In addition to this, a clear picture of the grey area for further investigations has been provided. Formulation of detailed scope of work for this study is also provided in this chapter. Details of different experimental techniques used in this study for deposition and characterization of these films are given in chapter 2. In the third chapter of the thesis a detailed study on the structural, microstructural and magnetic properties of Fe-Ga films deposited using dc magnetron sputtering technique are presented. The effect of sputtering parameters such as (i) Ar pressure, (ii) sputtering power, (iii) substrate temperature and (iv) deposition time/film thickness on the magnetic properties of the films are discussed in detail. All the films are found to be polycrystalline in nature with A2 type structure as evidenced from grazing incidence X-ray diffraction (GIXRD) and transmission electron microscope (TEM) studies. Surface morphology of the films are found to be affected with processing conditions considerably. Thermomagnetic behaviour of the films studied using a Superconducting Quantum Interference Device (SQUID) magnetometer under zero field cooled (ZFC) and field cooled (FC) conditions are also presented. The sputtering parameters are also found to influence the magnetic properties of the films through modifications in microstructure, surface morphology and film compositions. Irrespective of the sputtering parameters, room temperature (RT) deposited Fe-Ga films are found to exhibit large magnetic coercively and large saturation magnetic field as compared to the bulk alloy of similar compositions which are not desirable for micromagnetic device applications. A significant improvement in the magnetic properties of the films was obtained in the films deposited at higher substrate temperatures and is correlated with modifications in grain size and film surface roughness. These films are also found to exhibit better magnetostriction than the RT deposited films. Further, the magnetic properties of Fe-Ga films as a function of film thickness in the range 2 – 480 nm are also presented. The nature of variation of coercively with film thickness was correlated with grain size effect and explained successfully with the help of random anisotropy model. In the fourth chapter, studies on the microstructural and magnetic properties of Tb-Fe films were presented. It was reported earlier that TbxFe100-x films exhibit in-plane magnetic anisotropy for the films with x > 42 at.% of Tb and out-of-plane anisotropy for the composition 28 < x < 42. Presence of these anisotropies is technologically important for different applications. We have studied the magnetic properties of Tb-Fe films in these two composition range. TbxFe100-x films with 54  x  59 were prepared using dc magnetron sputtering technique under varying Ar pressure and sputtering power and the details about microstructural and magnetic properties are presented in this chapter. All the films are found to be amorphous in nature. While the composition of the film is found to remain constant with sputtering power, the Fe concentration in the film is found to be depleted with increase in Ar pressure. Magnetic properties are found to change from superparamagnetic to ferromagnetic behaviour with increase in sputtering power. Curie temperature of the films are found to be low (below RT) and is explained based on sperimagnetic ordering of magnetic sub-lattices. The perpendicular magnetic anisotropy (PMA) or out-of-plane anisotropy behaviour of Tb-Fe films were not studied in detail as a function of film thickness. We have successfully prepared TbxFe100-x films with 29  x  40 using e-beam evaporation technique using alloy target composition of TbFe in order to study the PMA behaviour as a function of film thickness. The thickness of the films was varied from 50 to 800 nm. All the films are found to be amorphous and columnar growth structure with fine channels of voids are observed from the TEM studies. Detailed magnetization and thermomagnetic measurements were carried out using SQUID magnetometer at different temperatures. The out-of-plane magnetic coercivity of the films was found to increase with film thickness and then decreases with further increase in thickness. Maximum coercivity of ~ 20 kOe has been obtained for the 400 nm thick film. Magnetic domain patterns were studied using magnetic force microscopy (MFM) technique and the observed magnetic properties are correlated with domain pattern and microstructures. Although there are several reports on device applications of Sm-Fe thin films which exhibit negative magnetostriction, a comprehensive study on the effect of different process parameters on the magnetic properties and its correlation with structure and microstructure is still elusive. Hence, Sm-Fe films were deposited on Si (100) substrate using dc magnetron sputtering technique under varying Ar pressure and sputtering power. Effect of these parameters on the microstructural and magnetic properties of the films was studied in detail and is presented in chapter 5. The curie temperature of the films was found to increase with increase in sputtering power and Ar pressure. This was attributed to increase in film thickness and size of islands (atomic clusters). Coercivity as low as 30 Oe has been achieved in the film deposited at 15 mTorr Ar pressure. The Curie temperature for the films deposited at higher Ar pressure (10 and 15 mTorr) are found to be above RT. Maximum saturation magnetostriction of ~ - 390 -strains has been achieved in the film deposited at 15 mTorr Ar pressure. Rapid thermal processing (RTP) experiments were also carried out to increase the magnetic ordering in the films deposited at low Ar pressure (5 mTorr) by imparting structural ordering. Large improvement in magnetization and Curie temperature of the film was observed after RTA. However, this could be attributed to the formation of nano-crystalline Fe phase as evidenced from the TEM studies and thermomagnetic measurements. An overall summary of the experimental results has been presented in chapter 6. The scope of work for further study in future has also been highlighted in chapter 7.

Page generated in 0.1319 seconds