Spelling suggestions: "subject:"magnetpartikelbildgebung"" "subject:"nanopartikelbildung""
1 |
Traveling Wave Magnetic Particle Imaging / Traveling Wave Magnetic Particle ImagingVogel, Patrick January 2016 (has links) (PDF)
Magnetic Particle Imaging (MPI) ist eine noch sehr junge Technologie unter den nicht-invasiven tomographischen Verfahren. Seit der ersten Veröffentlichung 2005 wurden einige Scannertypen und Konzepte vorgestellt, welche durch die Messung des Antwortsignals von superparamagnetischen Eisennanopartikeln (SPIOs) auf wechselnde Magnetfelder ein dreidi-mensionales Bild ihrer Verteilung berechnen können. Durch die direkte Messung des Tracers handelt es sich beim MPI um eine sehr sensitive und hochspezifische bildgebende Methode.
Zu Beginn dieser Forschungsarbeit gab es nur wenige bekannte MPI-Scanner, die jedoch alle ein nur kleines Field-of-View (FOV) vorweisen konnten. Der Grund dafür liegt in der Ver-wendung von Permanentmagneten.
Das Ziel war es nun, ein neues Konzept auszuarbeiten und einen 3D-MPI-Scanner zu entwer-fen, der in der Lage ist, ein mausgroßes Objekt zu messen.
In dieser Arbeit wird ein alternatives Scannerkonzept für die dreidimensionale Bildge-bung superparamagnetischer Eisennanopartikel vorgestellt. Der Traveling Wave MPI-Scanner (TWMPI) basiert auf einem neu entwickelten Hauptspulensystem, welches aus mehreren Elektromagneten besteht. Dadurch ist die Hardware bereits in der Lage, eine Linie entlang der Symmetrieachse über einen großen Bereich dynamisch zu kodieren. Mit Hilfe weiterer Ab-lenkspulen kann schließlich ein FOV von 65 x 25 x 25 Millimetern dreidimensional abgetastet werden. Dazu stehen mehrere Scanverfahren zur Verfügung, welche das Probenvolumen li-nienweise oder ebenenweise abtasten und mit einer Auflösung von ca. 2 Millimetern die Ver-teilung der SPIOs in wenigen Millisekunden abbilden können.
Mit diesem neuen Hardwareansatz konnte erstmals ein MPI-Scanner mit einem MR-Tomographen (MRT) kombiniert werden. Das MPI/MRT-Hybridsystem liefert tomographi-sche Bilder des Gewebes (MRT) und zeigt die Verteilung des eisenhaltigen Kontrastmittels (MPI), ohne die Probe bewegen zu müssen.
In einer in-vivo Echtzeitmessung konnte der TWMPI-Scanner mit 20 Bildern pro Se-kunde die dynamische Verteilung eines eisenhaltigen Kontrastmittels im Körper und speziell im schlagenden Herzen eines Tieres darstellen. Diese Echtzeitfähigkeit eröffnet in der kardi-ovaskuläre Bildgebung neue Möglichkeiten.
Erste Messungen mit funktionalisierten Eisenpartikeln zeigen die spezifische Bildge-bung verschiedener Zelltypen und stellen einen interessanten Aspekt für die molekulare Bild-gebung dar. Die Sensitivität des Scanners liegt dabei im Bereich von wenigen Mikrogramm Eisen pro Milliliter, was für den Nachweis von wenigen 10.000 mit Eisen markierten Zellen ausreicht.
Neben Messungen an diversen Ferrofluiden und eisenhaltigen Kontrastmitteln konnte der Einfluss von massiven Materialen, wie Eisenstückchen oder Eisenspänen, auf die rekon-struierten Bilder untersucht werden.
Erste Messungen an Gestein zeigen die Verteilung von Eiseneinschlüssen und bieten die Möglichkeit einer weiteren zerstörungsfreien Untersuchungsmethode für Materialwissen-schaftler und Geologen. Weiterführende Testmessungen mit einer unabhängigen μMPI-Anlage zeigen erste Ergebnisse mit Auflösungen im Mikrometerbereich und liefern Erkennt-nisse für den Umgang und Messung mit starken Gradientenfeldern.
Eine Modifizierung der Messanlage erlaubt es, in gerade einmal 500 μs ein komplettes Bild aufzunehmen, womit die Bewegung eines Ferrofluidtropfens in Wasser sichtbar gemacht werden konnte. Damit ist diese TWMPI-Anlage das schnellste MPI-System und eröffnet die Möglichkeit grundlegende Erfahrungen in der Partikeldynamik zu erlangen.
Der vorgestellte Traveling Wave MPI-Scanner ist ein alternativer Scannertyp, welcher sich von anderen MPI-Scannern abhebt. Mit neuen Ansätzen ist in der Lage ein mausgroßes Objekt auf dynamische Weise sehr schnell abzutasten. Dabei konnten in verschiedenen Mes-sungen die Funktionalität und Leistungsfähigkeit des TWMPI-Konzeptes demonstriert wer-den, welche die gesteckten Ziele deutlich übertreffen. / Magnetic particle imaging (MPI) is still a very young technology among the non-invasive tomographic modalities. Since its first publication in 2005, several types of scanners and concepts were presented, which can reconstruct a three-dimensional image of the distri-bution of superparamagnetic iron-oxide nanoparticles (SPIOs) by measuring their magnetiza-tion response to varying magnetic fields. Due to the direct measurement of the tracer MPI is a very sensitive and highly specific imaging modality.
At the beginning of this project only a few MPI-scanners were known, but all of them are limited to a small field-of-view (FOV). The reason for this is the use of permanent mag-nets.
The aim of this work was to develop a new concept and design for a 3D-MPI-scanner, which is able to measure a mouse sized object.
In this thesis an alternative scanner concept for three-dimensional imaging of super-paramagnetic iron nanoparticles is presented. The Traveling Wave-MPI-scanner (TWMPI) is based on a newly developed main coil system, which consists of a series of electromagnets. This coil array is by itself able to dynamically encode a line along the symmetry axis over an extended length. With additional offset coils the system is able to scan a FOV of 65 x 25 x 25 millimeters in three dimensions. For scanning the whole volume several tech-niques are available, which map the data line-by-line or slice-by-slice in a few milliseconds and yield the distribution of SPIOs with a resolution of about 2 millimeters.
Using this new hardware approach a MPI-scanner was successfully combined with an MRI-scanner for the first time. The MPI/MRI-hybrid-system provides tomographic images of the tissue (MRI) and detects the distribution of iron-containing contrast agent (MPI), without the need to move the sample.
In an in-vivo real-time measurement using the TWMPI-scanner the dynamic distribu-tion of an iron-containing contrast agent was visualized in the body and especially in the beat-ing heart of an animal with a temporal resolution of 20 frames per second. This real-time ca-pability opens up new possibilities in cardio-vascular imaging.
First measurements using functionalized iron-oxide nanoparticles specifically detect different cell types and thereby provide an interesting aspect for molecular imaging. The sensi-tivity of the scanner is in the range of a few micrograms of iron per milliliter, which is suffi-cient to detect about 50,000 iron-labeled cells.
In several studies the influence of various ferrofluids, iron-containing contrast agents and solid materials, such as pieces of iron or iron filings, were examined on the reconstructed images.
First measurements on ferrous rock show the location of iron-inclusions and offer an-other non-destructive imaging technique for material scientists and geologists. Additional tests with an independent μMPI-system were performed to explore resolutions in the micrometer range and provide insights for handling and measuring with a high gradient strength.
A modification of the setup allows to acquire a full slice in just 500 microseconds, which enable the visualization of the motion of a droplet of ferrofluid in water. With this TWMPI is the fastest MPI-system available and gives access to fundamental studies of particle dynamics.
The presented Traveling Wave MPI-system is an alternative scanner concept, which sets itself apart from other MPI-scanners. Mouse-sized objects can be imaged in a dynamic way in very short times. The feasibility and performance of the TWMPI-concept were suc-cessfully demonstrated in various measurements considerably exceeding the original aims.
|
2 |
Vollständig integrierter Traveling-Wave-MPI-MRI-Hybridscanner / Fully Integrated Traveling-Wave-MPI-MRI-Hybrid ScannerKlauer, Peter January 2018 (has links) (PDF)
Magnetic Particle Imaging (MPI) ist ein neuartiges tomographisches Bildgebungsverfahren,
welches in der Lage ist, dreidimensional die Verteilung von superparamagnetischen
Nanopartikeln zu detektieren. Aufgrund des direkten Nachweises
des Tracers ist MPI ein sehr schnelles und sensitives Verfahren [12] und benötigt für
eine Einordnung des Tracers (z.B. im Gewebe) eine weitere bildgebende Modalität
wie die Magnetresonanztomographie (MRI) oder die Computertomographie. Die
strukturelle Einordnung wird häufig mit dem Fusion-Imaging-Verfahren durchgeführt,
bei dem die Proben separat in den Geräten vermessen und die Datensätze
retrospektiv korreliert werden [75][76]. In einem ersten Experiment wurde bereits
ein Traveling-Wave-MPI-Scanner (TWMPI) [17] mit einem Niederfeld-MRI-Scanner
kombiniert und die ersten Hybridmessung durchgeführt [15]. Der technische Aufwand,
zwei separate Geräte aufzubauen sowie die Tatsache, dass ein MRI-Gerät
bei 30mT sehr lange benötigt, diente als Motivation für ein integriertes TWMPIMRI-
Hybridsystem, bei dem das dynamische lineare Gradientenarray (dLGA) eines
TWMPI-Scanners intrinsisch das B0-Feld für ein MRI-Gerät erzeugen sollte.
Das Ziel dieser Arbeit war es, die Grundlagen für einen integrierten TWMPI-MRIHybridscanner
zu schaffen. Die Geometrie des dLGAs sollte dabei nicht verändert
werden, damit TWMPI-Messungen weiterhin ohne Einschränkungen möglich sind.
Zusammenfassend werden hier noch mal die wichtigsten Schritte und Ergebnisse
dieser Arbeit aufgezeigt.
Zu Beginn dieser Arbeit wurde mittels Magnetfeldsimulationen nach einer geeigneten
Stromverteilung gesucht, um allein mit dem dLGA ein ausreichend homogenes
Magnetfeld erzeugen zu können. Die Ergebnisse der Simulationen zeigten,
dass bereits zwei unterschiedliche Ströme in 14 der 20 Einzelspulen des dLGAs
genügten, um ein Field of View (FOV) mit der Größe 36mm x 12mm mit ausreichender
Homogenität zu erreichen. Die Homogenität innerhalb des FOVs betrug
dabei 3000 ppm. Für die angestrebte Feldstärke von 235mT waren Stromstärken
von 129A und 124A nötig.
Die hohen Ströme des dLGAs erforderten die Entwicklung eines dafür angepassten
Verstärkers. Das ursprüngliche Konzept, welches auf einem linear angesteuerten
Leistungstransistors aufbaute, wurde in zahlreichen Schritten so weit verbessert,
dass die nötigen Stromstärken stabil an- und ausgeschaltet werden konnten.
Mithilfe eines Ganzkörper-MRIs konnte erstmals das B0-Feld des dLGAs, welches
durch den selbstgebauten Verstärker erzeugt wurde, gemessen und mit der Simulation
verglichen werden. Zwischen den beiden Verläufen zeigte sich eine qualitativ
gute Übereinstimmung.
Das Finden des NMR-Signals stellte wegen des selbstgebauten Verstärkers eine
Herausforderung dar, da zu diesem Zeitpunkt die nötige Präzision noch nicht erreicht
wurde und der wichtigste Parameter, die Magnetfeldstärke im dLGA, nicht
gemessen werden konnte. Dagegen konnte die Länge der Pulse für die Spin-Echo-
Sequenz sehr gut gemessen werden, jedoch war der optimale Wert noch nicht bekannt.
Durch iterative Messungen wurden die richtigen Einstellungen gefunden,
die nach Änderungen an der Hardware jeweils angepasst wurden.
Die Performanz des Verstärkers konnte anhand wiederholter Messungen des NMRSignals
genauer untersucht werden. Es zeigte sich, dass die Präzision weiter verbessert
werden musste, um reproduzierbare Ergebnisse zu erhalten. Mithilfe des
NMR-Signals konnten auch das B0-Feld ausgemessen werden. Es zeigte eine gute
Übereinstimmung zur Simulation. Mithilfe von vier Segmentspulen des dLGAs
war es möglich einen linearen Gradienten entlang der z-Achse zu erzeugen. Ein
Gradient wurde zusätzlich zum B0-Feld geschaltet und ebenfalls ausgemessen.
Auch dieser Verlauf zeigte eine gute Übereinstimmung zur Simulation.
Mithilfe des Gradienten wurde erfolgreich die Frequenzkodierung und die Phasenkodierung
implementiert, durch die bei beiden Messungen zwei Proben anhand
des Ortes unterschieden werden konnten. Damit war die Entwicklung des MRIScanners
abgeschlossen.
Der Aufbau des TWMPI-Scanners benötigte neben dem Bau des dLGAs die Anfertigung
von Sattelspulen. Für die MPI-Messungen konnte der fehlende Teil der
Sendekette sowie die gesamte Empfangskette von einer früheren Version benutzt
werden. Auch für das MPI wurde die Funktionalität mithilfe einer Punktprobe und
eines Phantoms überprüft, allerdings hier in zwei Dimensionen.
Die Erweiterung zu einem Hybridscanner erforderte weitere Modifikationen gegenüber
einem reinen TWMPI- bzw. MRI-Scanner. Es musste ein Weg gefunden
werden, die Beschaltung des dLGAs für die jeweilige Modalität zügig anzupassen.
Dafür wurde ein Steckbrett gebaut, das es erlaubt, die Verkabelung des dLGAs in
kurzer Zeit zu ändern. Außerdem mussten innerhalb des dLGAs die Sattelspulen
und die Empfangsspule des TWMPIs sowie die Empfangsspule des MRIs untergebracht
werden. Ein modulares System erlaubte die gleichzeitige Anordnung aller
Komponenten innerhalb des dLGAs. Das messbare FOV des MRIs ist der Homogenität
des B0-Feldes angepasst, das FOV des TWMPI ist ausgedehnter.
Zum Ende dieser Arbeit wurde erfolgreich eine Hybridmessung durchgeführt. Das
Phantom bestand aus je zwei Kugeln gefüllt mit Öl und mit einem MPI-Tracer
(Resovist). Mit TWMPI war die räumliche Abbildung der Resovistkugeln möglich,
während mit MRI die der Ölkugeln möglich war. Diese in situ Messung zeigte die
erfolgreiche Umsetzung des Konzeptes für den TWMPI-MRI-Hybridscanner.
Zusammenfassend wurden in dieser Arbeit die Grundlagen für einen TWMPIMRI-
Hybridscanner gelegt. Die größte Schwierigkeit bestand darin, ein ausreichend
homogenes B0-Feld für das MRI zu erzeugen, mit dem man ein gutes NMRSignal
aufnehmen konnte. Mit einer einfachen Stromverteilung, bestehend aus zwei
unterschiedlichen Strömen, konnte ein ausreichend homogenes B0-Feld erzeugt
werden. Durch komplexere Stromverteilungen lässt sich die Homogenität noch verbessern
und somit das FOV vergrößern.
Die MRI-Bildgebung wurde in dieser Arbeit für eine Dimension implementiert und
soll in fortführenden Arbeiten auf 2D und 3D ausgedehnt werden. Letztendlich
soll anhand eines MRI-Bildes die Partikelverteilung des MPI-Tracers in Lebewesen
deren Anatomie zugeordnet werden. In [76][77][78] sind die ersten präklinischen
Anwendungen mit dem TWMPI-Scanner durchgeführt worden. Diese Anwendungen
erlangen eine höhere Aussagekraft durch die zusätzlichen Informationen eines
TWMPI-MRI-Hybridscanners.
In weiteren Arbeiten sollte zusätzlich die Größe des FOVs für das MRI erweitert
werden. Außerdem macht es Sinn, einen elektronischen Schalter zum Umschalten
des dLGAs zwischen MRI und MPI zu realisieren.
Die nächste Version des Hybridscanners könnte beispielsweise ein komplett neu
gestaltetes dLGA enthalten, in dem jede Segmentspule in radialer Richtung einmal
geteilt wird und dadurch in eine innere und eine äußere Spule zerlegt wird. Für
das MRI werden die beiden Spulenteile gegen geschaltet, um ein homogenes Feld
in radialer Richtung zu erhalten. Für das TWMPI werden die Spulenteile gleichgeschaltet,
um einen möglichst starken Feldgradienten zu erreichen.
In dieser Arbeit wurde für die nächste Version eines TWMPI-MRI-Hybridscanners
viel Wissen generiert, das äußerst hilfreich für das neue Design sein wird. Anhand
der Vermessung des B0-Feldes hat sich gezeigt, dass die simulierten Magnetfelder
gut mit den gemessenen Magnetfeldern übereinstimmen. Außerdem wurde viel
gelernt über die Kombination von TWMPI mit MRI. / Magnetic Particle Imaging (MPI) is a novel tomographic imaging technique, which
can detect the distribution of superparamagnetic iron oxides in three dimensions.
MPI is a fast and sensitive technique due to its immediate tracer detection [12] but
needs another imaging modality like magnetic resonance imaging (MRI) or computed
tomography for tracer classification (e.g. to tissue). The classification is often
done with the fusion imaging technology where the sample is measured in different
systems and the data are correlated afterwards [75][76]. In a first experiment
a traveling-wave-MPI-scanner (TWMPI) [17] was combined with a low-field-MRIscanner
and first hybrid measurements were acquired [15]. The motivation for an
integrated TWMPI-MRI-hybrid system, in which the dynamic linear gradient array
(dLGA) generates the main magnetic field B0 intrinsically, was such that an
MRI-system at 30mT needs a long time for data acquisition as well as the higher
technical effort for assembling two separate systems.
The aim of this work was to establish the basic principles of an integrated TWMPIMRI-
hybrid scanner. The geometry of the dLGA should not be altered in this
process so that TWMPI-measurements are still possible without limitations. All
important steps and measurements of this work are presented here in summary.
At the beginning of this work it was necessary to find a suitable current configuration
by the use of magnetic field simulations. The aim was to generate a magnetic
field that is homogenous enough for NMR measurements only with the dLGA
coils. The results of the simulations showed that only two different currents in 14
of the 20 dLGA coils are necessary to obtain a field of view (FOV) with a sufficiently
homogeneity of 3000ppm and a size of 36mm x 12 mm. For the target field
strength of 235mT currents of 129A and 124A are required.
The high currents in the dLGA made it necessary to develop a custom amplifier.
The original concept, which is based on a linear controlled power transistor, was
improved in numerous steps so that the high currents could be turned on and off
in a stable way.
The magnetic field B0 of the dLGA, which was generated by the custom amplifier,
could firstly be measured with the aid of a full-body MRI. Its comparison to the
simulation showed a qualitative good agreement.
A challenge was to find the NMR-signal because of the custom amplifier which did
not have the necessary precision at this particular time and also the most important
parameter, the magnetic field strength inside the dLGA, could not be measured. In
contrast the length of the pulses for the spin-echo-sequence could be measured
accurately, but the ideal value was not known. Iterative measurements were used
to find the right adjustments, which had to be adapted after each change in the
hardware.
The amplifier performance could be analyzed more in detail by repeated measurements
of the NMR-signal. They indicated that the precision had to be improved
further to achieve reproducible results. The B0-field could be measured by means
of the NMR-signal. It showed good agreement to the simulation. By means of
four segment coils of the dLGA it was possible to create a linear gradient along the
z-axis. as well as the gradient along the z-axis
By means of the gradient frequency encoding and phase encoding were successfully
implemented. Two samples could be differentiated by its location for both
encoding methods. That completes the development of the MRI-scanner.
The design of the TWMPI-scanner required the construction of the saddle coils besides
the production of the dLGA. The missing parts of the transmit chain and the
whole receive chain could be used from an earlier version for MPI-measurements.
The functionality of the MPI was tested with a point sample and a phantom, but
this time in two dimensions.
The extension to a hybrid scanner required additional modifications compared to
a pure TWMPI- or MRI-scanner. An efficient way had to be found to change the
connections of the dLGA for the particular modality. A pinboard was built which
made a rapid change of the connections of the dLGA possible. Furthermore the
saddle coils and the receive coil of the TWMPI-system as well as the receive coil
of the MRI had to be placed inside the dLGA. This problem was solved with a
modular system which made it possible to simultaneously place all components
inside the dLGA. The measurable FOV of the MRI is adapted to the homogeneity
of the B0-field, the FOV of the TWMPI is larger.
At the end of this work a hybrid measurement was successfully performed. The
phantom consisted of two spheres filled with oil and another two spheres filled
with an MPI-tracer (Resovist). With TWMPI the spatial resolution of the Resovist
spheres was possible, while with MRI it was possible for the oil spheres. This
in situ measurement showed the successful implementation of the TWMPI-MRIhybrid
scanner concept.
In summary the basic principles for a TWMPI-MRI-hybrid scanner were established
in this work. The highest obstacle was the generation of a homogenous
magnetic field B0 for MRI, which lead to a good NMR-signal. A simple current configuration,
consisting of two different currents, generated a sufficient homogenous
magnetic field. With more complex current configurations a more homogenous
field and thereby a larger FOV is possible.
MRI-imaging was implemented in this work in one dimension and should be extended
to 2D and 3D in further projects. Eventually an MRI-image should be used
to display a relation between particle distribution of the MPI-tracer in living creatures
and their anatomy. The first preclinical applications were implemented with
the TWMPI-scanner [76][77][78]. These applications would reach a higher information
value with the use of a TWMPI-MRI-hybrid scanner.
The size of the FOV for the MRI should be extended in further projects. Furthermore
it is reasonable to realize an electric switch for changing the connections of
the dLGA between MRI and MPI.
The next version of the hybrid scanner could contain for example a completely
newly designed dLGA in which every segment coil is divided radially. The segment
coils would consist of an inner and an outer part. For MRI-measurements
both magnetic fields work against each other to create a radially homogenous
magnetic field. For TWMPI both magnetic fields work together to create a high
magnetic field gradient.
For the next version of a TWMPI-MRI-hybrid scanner a lot of know-how was created
which will be helpful for the new design. By means of the B0 measurements
it was shown that the simulated magnetic fields fit well to the measured ones.
Furthermore plenty was learned for the combination of TWMPI and MRI.
|
3 |
Traveling Wave Magnetic Particle Imaging: Visuelle Stenosequantifizierung und Perkutane Transluminale Angioplastie im Gefäßmodell / Traveling Wave Magnetic Particle Imaging: visual stenosis quantification and percutaneous transluminal angioplasty in a phantom modelDietrich, Philipp January 2024 (has links) (PDF)
Magnetic Particle Imaging (MPI) ist ein innovatives tomographisches Bildgebungsverfahren, mit dem Tracerpartikel äußerst sensitiv und schnell mehrdimensional abgebildet werden können. Die Methode basiert auf der nichtlinearen Magnetisierungsantwort superparamagnetischer Eisenoxidnanopartikel (SPION) in einem Messpunkt, welcher ein Messvolumen rastert. In vorliegender Arbeit wurde das sog. Traveling Wave MPI (TWMPI) Verfahren eingesetzt, wodurch im Vergleich zu konventionellen MPI-Scannern ein größeres Field of View (FOV) und eine geringere Latenz bis zur Bildanzeige erreicht werden konnte. TWMPI weist einige für medizinische Zwecke vielversprechende Eigenschaften auf: Es liefert zwei- und dreidimensionale Bildrekonstruktionen in Echtzeit mit hoher zeitlicher und räumlicher Auflösung. Dabei ist die Bildgebung von Grund auf hintergrundfrei und erfordert keinerlei ionisierende Strahlung. Zudem ist die Technik äußerst sensitiv und kann SPION-Tracer noch in mikromolaren Konzentrationen detektieren.
Ziel dieser Arbeit war es daher zu untersuchen, inwiefern es mittels TWMPI möglich ist, künstliche Stenosen im Gefäßmodell visuell in Echtzeit darzustellen und quantitativ zu beurteilen sowie überdies eine perkutane transluminale Angioplastie (PTA) im Gefäßmodell unter TWMPI-Echtzeit-Bildgebung durchzuführen.
Alle Experimente wurden in einem speziell angefertigten TWMPI-Scanner durchgeführt (JMU Würzburg, Experimentelle Physik V (Biophysik), FOV: 65 x 29 x 29 mm³, Auflösung: ca. 1.5 - 2 mm). Die Lumen-Darstellungen erfolgten mittels des SPION-Tracers Ferucarbotran in einer Verdünnung von 1 : 50 (entspr. 10 mmol [Fe]/l). Das PTA-Instrumentarium wurde mit eigens hergestelltem ferucarbotranhaltigem Lack (100 mmol [Fe]/l) markiert. Für die verschiedenen Teilexperimente wurden den jeweiligen speziellen Anforderungen entsprechend mehrere Gefäßmodelle handgefertigt.
Für die visuelle Stenosequantifizierung wurden fünf starre Stenosephantome unterschiedlicher Stenosierung (0%, 25%, 50%, 75%, 100%) aus Polyoxymethylen hergestellt (l: 40 mm, ID: 8 mm). Die Gefäßmodelle wurden mehrfach zentral im FOV platziert und das stenosierte Lumen mittels sog. Slice-Scanning Modus (SSM, Einzelaufnahme inkl. 10 Mittelungen: 200 ms, Bildfrequenz: 5 Bilder pro Sekunde, Latenz: ca. 100 ms) als zweidimensionale Quasi-Projektionen abgebildet. Diese Aufnahmen (n = 80, 16 je Phantom) wurden mit einer einheitlichen Grauskalierung versehen und anschließend entsprechend den NASCET-Kriterien visuell ausgewertet.
Alle achtzig Aufnahmen waren unabhängig vom Stenosegrad aufgrund einheitlicher Fensterung sowie konstanter Scannerparameter untereinander gut vergleichbar. Niedriggradige Stenosen konnten insgesamt genauer abgebildet werden als höhergradige, was sich neben der subjektiven Bildqualität auch in geringeren Standardabweichungen zeigte (0%: 3.70 % ± 2.71, 25%: 18.64 % ± 1.84, 50%: 52.82 % ± 3.66, 75%: 77.84 % ± 14.77, 100%: 100 % ± 0). Mit zunehmendem Stenosegrad kam es vermehrt zu geometrischen Verzerrungen im Zentrum, sodass bei den 75%-Stenosen eine breitere Streuung der Messwerte mit einer höheren Standardabweichung von 14.77% einherging. Leichte, randständige Artefakte konnten bei allen Datensätzen beobachtet werden.
Für die PTA wurden drei interaktive Gefäßmodelle aus Polyvinylchlorid (l: 100 mm, ID: 8 mm) mit zu- und abführendem Schlauchsystem entwickelt, welche mittels Kabelband von außen hochgradig eingeengt werden konnten. Analog zu einer konventionellen PTA mittels röntgenbasierter digitaler Subtraktionsangiographie (DSA), wurden alle erforderlichen Arbeitsschritte (Gefäßdarstellung, Drahtpassage, Ballonplatzierung, Angioplastie, Erfolgskontrolle) unter (TW)MPI-Echtzeit-Bildgebung (Framerate: 2 - 4 FPS, Latenz: ca. 100 ms) abgebildet bzw. durchgeführt.
Im Rahmen der PTA war eine Echtzeit-Visualisierung der Stenose im Gefäßmodell durch Tracer-Bolusgabe sowie die Führung des markierten Instrumentariums zum Zielort möglich. Die Markierung der Instrumente hielt der Beanspruchung während der Prozedur stand und ermöglichte eine genaue Platzierung des Ballonkatheters. Die Stenose konnte mittels Angioplastie-Ballons unter Echtzeit-Darstellung gesprengt werden und der Interventionserfolg im Anschluss durch erneute Visualisierung des Lumens validiert werden.
Insgesamt zeigt sich MPI somit als adäquate Bildgebungstechnik für die beiden in der Fragestellung bzw. Zielsetzung definierten experimentellen Anwendungen. Stenosen im Gefäßmodell konnten erfolgreich in Echtzeit visualisiert und bildmorphologisch nach NASCET-Kriterien quantifiziert werden. Ebenso war eine PTA im Gefäßmodell unter TWMPI-Echtzeit-Bildgebung machbar. Diese Ergebnisse unterstreichen das grundlegende Potenzial von MPI für medizinische Zwecke. Um zu den bereits etablierten Bildgebungsmethoden aufzuschließen, ist jedoch weitere Forschung im Bereich der Scanner-Hard- und -Software sowie bezüglich SPION-Tracern nötig. / Magnetic Particle Imaging (MPI) is an innovative tomographic imaging method with which tracer particles can be depicted multidimensionally quickly and extremely sensitively. The method is based on the nonlinear magnetization response of superparamagnetic iron oxide nanoparticles (SPION) in a measuring point that runs through a measurement volume. In the present work, the so-called Traveling Wave MPI (TWMPI) method was used, whereby a larger Field of View (FOV) and a lower latency from measurement to image display could be achieved compared to conventional MPI scanners. TWMPI has some promising properties for medical purposes: it delivers two- and three-dimensional image reconstructions in real time with high temporal and spatial resolution. The imaging is background-free by default and does not require any ionizing radiation. In addition, the technology is extremely sensitive and can detect SPION tracers in micromolar concentrations.
The aim of this work was therefore to investigate to what extent it is possible to use TWMPI to graphically visualize and quantitatively assess artificial stenoses in a phantom model in real time and furthermore to perform a percutaneous transluminal angioplasty (PTA) in a phantom model under TWMPI real-time imaging.
All experiments were carried out in a specially manufactured TWMPI scanner (JMU Würzburg, Experimental Physics V (Biophysics), FOV: 65 x 29 x 29 mm³, resolution: approx. 1.5 - 2 mm). Lumen visualization was achieved by use of the SPION tracer Ferucarbotran in a dilution of 1 : 50 (corresponding to 10 mmol [Fe] / l). The PTA instruments were marked with specially produced ferucarbotran-containing lacquer (100 mmol [Fe]/l). For the different sub-experiments, several vessel phantoms were custom-made according to the respective specific requirements.
For visual stenosis quantification, five rigid stenosis phantoms of different grade of stenosis (0%, 25%, 50%, 75%, 100%) were built from polyoxymethylene (l: 40 mm, ID: 8 mm). The vessel phantoms were placed centrally in the FOV several times and the stenotic lumen was depicted as two-dimensional quasi-projections using a so-called slice scanning mode (SSM, single recording incl. averaging 10‑fold: 200 ms, frame rate: 5 frames per second, latency: approx. 100 ms). A uniform gray scaling was applied to these images (n = 80, 16 per phantom) before they were visually evaluated according to the NASCET criteria.
Due to the uniform gray scaling, display settings and constant scanner parameters, all eighty images were well comparable with each other, regardless of the degree of stenosis. Overall, low-grade stenoses could be depicted more accurately than higher-grade ones, which, in addition to the subjective image quality, was also reflected in lower standard deviations (0%: 3.70 % ± 2.71, 25%: 18.64 % ± 1.84, 50%: 52.82 % ± 3.66, 75%: 77.84 % ± 14.77, 100%: 100 % ± 0). With increasing degree of stenosis, geometric distortions in the center increased, so that within the 75% stenoses a wider spread of the measured values led to a higher standard deviation of 14.77%. Faint, marginal artifacts could be observed over all data sets.
For PTA, three interactive vessel phantoms made of polyvinyl chloride (l: 100 mm, ID: 8 mm) were developed with additional tubing to and from the phantom. These vessel phantoms could be highly constricted from the outside by use of cable ties. Analogous to a conventional PTA using X-ray-based digital subtraction angiography (DSA), all necessary steps (vascular visualization, wire passage, balloon placement, angioplasty, control imaging) were depicted by resp. carried out under (TW)MPI real-time imaging (frame rate: 2 – 4 FPS, latency: approx. 100 ms).
During the PTA, real-time visualization of the stenosis in the vascular phantom by tracer bolus administration as well as guidance of the marked instruments to the destination was possible. The marking of the instruments withstood the stress during the procedure and allowed an accurate placement of the balloon catheter. The stenosis could be dilated with an angioplasty balloon under real-time imaging and the intervention success could then be validated by re-visualization of the lumen.
Overall, MPI thus proves to be an adequate imaging technique in regard of the two experimental applications defined in the questions and aims of this study. Stenoses in a vascular phantom could be successfully visualized in real time and quantified visually according to NASCET criteria. Furthermore, a PTA in a vascular phantom guided by TWMPI real-time imaging was feasible. These findings underscore the fundamental potential of MPI for medical purposes. In order to catch up with the already established imaging methods, however, further research is needed in the field of scanner hard- and software as well as regarding SPION tracers.
|
Page generated in 0.4371 seconds