Spelling suggestions: "subject:"magnus expansion"" "subject:"smagnus expansion""
1 |
Dynamics of repeatedly driven closed systemsD'Alessio, Luca 07 April 2016 (has links)
This thesis covers my work in the field of closed, repeatedly
driven, Hamiltonian systems. These systems do not exchange
particles with the surrounding environment and their time-evolution
is described by Hamilton's equations of motion (in the classical
framework) or the Schroedinger equation (in the quantum framework).
Their interaction with the environment is encoded into the time-dependence of the system's Hamiltonian.
Chapter 1 is an "Overview" in which the status of the field,
my contributions and future prospective are outlined.
Chapters 2 to 4 provide the theoretical background which
is used in Chapters 5 to 7 to derive some original results.
These results show that in Hamiltonian systems,
after many driving events, universal properties emerge.
In particular, using the framework of the linear Boltzmann equation, I have studied the dynamics of a mobile, light impurity in a gas of heavy particles.
The impurity's kinetic energy increases and, in the long time limit,
approaches a non-thermal asymptotic distribution.
The significance of this work is to show explicitly
the emergence of a non-thermal distribution in a closed, driven system.
Moreover, using the work-fluctuation theorems, I have studied the character of the energy distribution of a generic isolated system driven according a generic protocol. Both thermal and non-thermal distributions can be realized for the same system by changing the characteristics of the driving protocol. These two different regimes are separated by a dynamical phase transition.
Finally, I have used the Floquet Theory and the
Magnus Expansion to analyze the behavior of a generic interacting system
which is driven periodically in time.
For fast driving the system is unable to absorb
energy and remains localized in the low energy part of the Hilbert space while for slow
driving the system absorbs energy and, in the long time limit, it is delocalized
in the entire Hilbert space. These two qualitatively different behaviors are separated by a
many-body localization transition which is related to the break down of the Magnus
expansion at the critical value of the driving frequency.
|
2 |
Analytic and numerical aspects of isospectral flowsKaur, Amandeep January 2018 (has links)
In this thesis we address the analytic and numerical aspects of isospectral flows. Such flows occur in mathematical physics and numerical linear algebra. Their main structural feature is to retain the eigenvalues in the solution space. We explore the solution of Isospectral flows and their stochastic counterpart using explicit generalisation of Magnus expansion. \par In the first part of the thesis we expand the solution of Bloch--Iserles equations, the matrix ordinary differential system of the form $ X'=[N,X^{2}],\ \ t\geq0, \ \ X(0)=X_0\in \textrm{Sym}(n),\ N\in \mathfrak{so}(n), $ where $\textrm{Sym}(n)$ denotes the space of real $n\times n$ symmetric matrices and $\mathfrak{so}(n)$ denotes the Lie algebra of real $n\times n$ skew-symmetric matrices. This system is endowed with Poisson structure and is integrable. Various important properties of the flow are discussed. The flow is solved using explicit Magnus expansion and the terms of expansion are represented as binary rooted trees deducing an explicit formalism to construct the trees recursively. Unlike classical numerical methods, e.g.\ Runge--Kutta and multistep methods, Magnus expansion respects the isospectrality of the system, and the shorthand of binary rooted trees reduces the computational cost of the exponentially growing terms. The desired structure of the solution (also with large time steps) has been displayed. \par Having seen the promising results in the first part of the thesis, the technique has been extended to the generalised double bracket flow $ X^{'}=[[N,X]+M,X], \ \ t\geq0, \ \ X(0)=X_0\in \textrm{Sym}(n),$ where $N\in \textrm{diag}(n)$ and $M\in \mathfrak{so}(n)$, which is also a form of an Isospectral flow. In the second part of the thesis we define the generalised double bracket flow and discuss its dynamics. It is noted that $N=0$ reduces it to an integrable flow, while for $M=0$ it results in a gradient flow. We analyse the flow for various non-zero values of $N$ and $M$ by assigning different weights and observe Hopf bifurcation in the system. The discretisation is done using Magnus series and the expansion terms have been portrayed using binary rooted trees. Although this matrix system appears more complex and leads to the tri-colour leaves; it has been possible to formulate the explicit recursive rule. The desired structure of the solution is obtained that leaves the eigenvalues invariant in the solution space.
|
3 |
Bases de monômes dans les algèbres pré-Lie libres et applications / Monomial bases for free pre-Lie algebras and applicationsAl-Kaabi, Mahdi Jasim Hasan 28 September 2015 (has links)
Dans cette thèse, nous étudions le concept d’algèbre pré-Lie libre engendrée par un ensemble (non-vide). Nous rappelons la construction par A. Agrachev et R. Gamkrelidze des bases de monômes dans les algèbres pré-Lie libres. Nous décrivons la matrice des vecteurs d’une base de monômes en termes de la base d’arbres enracinés exposée par F. Chapoton et M. Livernet. Nous montrons que cette matrice est unipotente et trouvons une expression explicite pour les coefficients de cette matrice, en adaptant une procédure suggérée par K. Ebrahimi-Fard et D. Manchon pour l’algèbre magmatique libre. Nous construisons une structure d’algèbre pré-Lie sur l’algèbre de Lie libre $\mathcal{L}$(E) engendrée par un ensemble E, donnant une présentation explicite de $\mathcal{L}$(E) comme quotient de l’algèbre pré-Lie libre $\mathcal{T}$^E, engendrée par les arbres enracinés (non-planaires) E-décorés, par un certain idéal I. Nous étudions les bases de Gröbner pour les algèbres de Lie libres dans une présentation à l’aide d’arbres. Nous décomposons la base d’arbres enracinés planaires E-décorés en deux parties O(J) et $\mathcal{T}$(J), où J est l’idéal définissant $\mathcal{L}$(E) comme quotient de l’algèbre magmatique libre engendrée par E. Ici, $\mathcal{T}$(J) est l’ensemble des termes maximaux des éléments de J, et son complément O(J) définit alors une base de $\mathcal{L}$(E). Nous obtenons un des résultats importants de cette thèse (Théorème 3.12) sur la description de l’ensemble O(J) en termes d’arbres. Nous décrivons des bases de monômes pour l’algèbre pré-Lie (respectivement l’algèbre de Lie libre) $\mathcal{L}$(E), en utilisant les procédures de bases de Gröbner et la base de monômes pour l’algèbre pré-Lie libre obtenue dans le Chapitre 2. Enfin, nous étudions les développements de Magnus classique et pré-Lie, discutant comment nous pouvons trouver une formule de récurrence pour le cas pré-Lie qui intègre déjà l’identité pré-Lie. Nous donnons une vision combinatoire d’une méthode numérique proposée par S. Blanes, F. Casas, et J. Ros, sur une écriture du développement de Magnus classique, utilisant la structure pré-Lie de $\mathcal{L}$(E). / In this thesis, we study the concept of free pre-Lie algebra generated by a (non-empty) set. We review the construction by A. Agrachev and R. Gamkrelidze of monomial bases in free pre-Lie algebras. We describe the matrix of the monomial basis vectors in terms of the rooted trees basis exhibited by F. Chapoton and M. Livernet. Also, we show that this matrix is unipotent and we find an explicit expression for its coefficients, adapting a procedure implemented for the free magmatic algebra by K. Ebrahimi-Fard and D. Manchon. We construct a pre-Lie structure on the free Lie algebra $\mathcal{L}$(E) generated by a set E, giving an explicit presentation of $\mathcal{L}$(E) as the quotient of the free pre-Lie algebra $\mathcal{T}$^E, generated by the (non-planar) E-decorated rooted trees, by some ideal I. We study the Gröbner bases for free Lie algebras in tree version. We split the basis of E- decorated planar rooted trees into two parts O(J) and $\mathcal{T}$(J), where J is the ideal defining $\mathcal{L}$(E) as a quotient of the free magmatic algebra generated by E. Here $\mathcal{T}$(J) is the set of maximal terms of elements of J, and its complement O(J) then defines a basis of $\mathcal{L}$(E). We get one of the important results in this thesis (Theorem 3.12), on the description of the set O(J) in terms of trees. We describe monomial bases for the pre-Lie (respectively free Lie) algebra $\mathcal{L}$(E), using the procedure of Gröbner bases and the monomial basis for the free pre-Lie algebra obtained in Chapter 2. Finally, we study the so-called classical and pre-Lie Magnus expansions, discussing how we can find a recursion for the pre-Lie case which already incorporates the pre-Lie identity. We give a combinatorial vision of a numerical method proposed by S. Blanes, F. Casas, and J. Ros, on a writing of the classical Magnus expansion in $\mathcal{L}$(E), using the pre-Lie structure.
|
4 |
Floquet engineering in periodically driven closed quantum systems: from dynamical localisation to ultracold topological matterBukov, Marin Georgiev 12 February 2022 (has links)
This dissertation presents a self-contained study of periodically-driven quantum systems. Following a brief introduction to Floquet theory, we introduce the inverse-frequency expansion, variants of which include the Floquet-Magnus, van Vleck, and Brillouin-Wigner expansions. We reveal that the convergence properties of these expansions depend strongly on the rotating frame chosen, and relate the former to the existence of Floquet resonances in the quasienergy spectrum. The theoretical design and experimental realisation (`engineering') of novel Floquet Hamiltonians is discussed introducing three universal high-frequency limits for systems comprising single-particle and many-body linear and nonlinear models. The celebrated Schrieffer-Wolff transformation for strongly-correlated quantum systems is generalised to periodically-driven systems, and a systematic approach to calculate higher-order corrections to the Rotating Wave Approximation is presented. Next, we develop Floquet adiabatic perturbation theory from first principles, and discuss extensively the adiabatic state preparation and the corresponding leading-order non-adiabatic corrections. Special emphasis is thereby put on geometrical and topological objects, such as the Floquet Berry curvature and the Floquet Chern number obtained within linear response in the presence of the drive. Last, pre-thermalisation and thermalisation in closed, clean periodically-driven quantum systems are studied in detail, with the focus put on the crucial role of Floquet many-body resonances for energy absorption.
|
5 |
Geometric Integrators for Schrödinger EquationsBader, Philipp Karl-Heinz 11 July 2014 (has links)
The celebrated Schrödinger equation is the key to understanding the dynamics of
quantum mechanical particles and comes in a variety of forms. Its numerical solution
poses numerous challenges, some of which are addressed in this work.
Arguably the most important problem in quantum mechanics is the so-called harmonic
oscillator due to its good approximation properties for trapping potentials. In
Chapter 2, an algebraic correspondence-technique is introduced and applied to construct
efficient splitting algorithms, based solely on fast Fourier transforms, which
solve quadratic potentials in any number of dimensions exactly - including the important
case of rotating particles and non-autonomous trappings after averaging by Magnus
expansions. The results are shown to transfer smoothly to the Gross-Pitaevskii
equation in Chapter 3. Additionally, the notion of modified nonlinear potentials is
introduced and it is shown how to efficiently compute them using Fourier transforms.
It is shown how to apply complex coefficient splittings to this nonlinear equation and
numerical results corroborate the findings.
In the semiclassical limit, the evolution operator becomes highly oscillatory and standard
splitting methods suffer from exponentially increasing complexity when raising
the order of the method. Algorithms with only quadratic order-dependence of the
computational cost are found using the Zassenhaus algorithm. In contrast to classical
splittings, special commutators are allowed to appear in the exponents. By construction,
they are rapidly decreasing in size with the semiclassical parameter and can be
exponentiated using only a few Lanczos iterations. For completeness, an alternative
technique based on Hagedorn wavepackets is revisited and interpreted in the light of
Magnus expansions and minor improvements are suggested. In the presence of explicit
time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algorithm
requires a special initiation step. Distinguishing the case of smooth and fast frequencies,
it is shown how to adapt the mechanism to obtain an efficiently computable
decomposition of an effective Hamiltonian that has been obtained after Magnus expansion,
without having to resolve the oscillations by taking a prohibitively small
time-step.
Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as
an initial value problem after a Wick-rotating the Schrödinger equation to imaginary
time. The elliptic nature of the evolution operator restricts standard splittings to
low order, ¿ < 3, because of the unavoidable appearance of negative fractional timesteps
that correspond to the ill-posed integration backwards in time. The inclusion
of modified potentials lifts the order barrier up to ¿ < 5. Both restrictions can be
circumvented using complex fractional time-steps with positive real part and sixthorder
methods optimized for near-integrable Hamiltonians are presented.
Conclusions and pointers to further research are detailed in Chapter 6, with a special
focus on optimal quantum control. / Bader, PK. (2014). Geometric Integrators for Schrödinger Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/38716 / Premios Extraordinarios de tesis doctorales
|
6 |
Magnus-based geometric integrators for dynamical systems with time-dependent potentialsKopylov, Nikita 27 March 2019 (has links)
[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial.
La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo.
El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis.
El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo.
La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético.
En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock.
El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente.
El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura. / [CA] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest.
L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps.
El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi.
El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps.
L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic.
En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock.
El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent.
El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura. / [EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics.
The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass.
Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced.
The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations.
The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field.
In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq.
Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass.
The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined. / Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798
|
Page generated in 0.0687 seconds