• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nová metoda řešení Schrödingerovy rovnice / A new method for the solution of the Schrödinger equation

Kocák, Jakub January 2017 (has links)
Title: A new method for the solution of the Schrödinger equation Author: Jakub Kocák Department: Department of Physical and Macromolecular Chemistry Supervisor: doc. RNDr. Filip Uhlík, Ph.D. Abstract: In this thesis we study method for the solution of time-independent Schrö- dinger equation for ground state. The wave function, interpreted as probability density, is represented by samples. In each iteration we applied approximant of imaginary time propagator. Acting of the operator is implemented by Monte Carlo simulation. Part of the thesis is dedicated to methods of energy calculation from samples of wave function: method based on estimation of value of wave function, method of convolution with heat kernel, method of averaged energy weighed by wave function and exponential de- cay method. The method for the solution was used to find ground state and energy for 6-dimensional harmonic oscillator, anharmonic 3-dimensional octic oscillator and hydrogen atom. Keywords: imaginary time propagation, Monte Carlo method, variational principle, ground state 1
2

Geometric Integrators for Schrödinger Equations

Bader, Philipp Karl-Heinz 11 July 2014 (has links)
The celebrated Schrödinger equation is the key to understanding the dynamics of quantum mechanical particles and comes in a variety of forms. Its numerical solution poses numerous challenges, some of which are addressed in this work. Arguably the most important problem in quantum mechanics is the so-called harmonic oscillator due to its good approximation properties for trapping potentials. In Chapter 2, an algebraic correspondence-technique is introduced and applied to construct efficient splitting algorithms, based solely on fast Fourier transforms, which solve quadratic potentials in any number of dimensions exactly - including the important case of rotating particles and non-autonomous trappings after averaging by Magnus expansions. The results are shown to transfer smoothly to the Gross-Pitaevskii equation in Chapter 3. Additionally, the notion of modified nonlinear potentials is introduced and it is shown how to efficiently compute them using Fourier transforms. It is shown how to apply complex coefficient splittings to this nonlinear equation and numerical results corroborate the findings. In the semiclassical limit, the evolution operator becomes highly oscillatory and standard splitting methods suffer from exponentially increasing complexity when raising the order of the method. Algorithms with only quadratic order-dependence of the computational cost are found using the Zassenhaus algorithm. In contrast to classical splittings, special commutators are allowed to appear in the exponents. By construction, they are rapidly decreasing in size with the semiclassical parameter and can be exponentiated using only a few Lanczos iterations. For completeness, an alternative technique based on Hagedorn wavepackets is revisited and interpreted in the light of Magnus expansions and minor improvements are suggested. In the presence of explicit time-dependencies in the semiclassical Hamiltonian, the Zassenhaus algorithm requires a special initiation step. Distinguishing the case of smooth and fast frequencies, it is shown how to adapt the mechanism to obtain an efficiently computable decomposition of an effective Hamiltonian that has been obtained after Magnus expansion, without having to resolve the oscillations by taking a prohibitively small time-step. Chapter 5 considers the Schrödinger eigenvalue problem which can be formulated as an initial value problem after a Wick-rotating the Schrödinger equation to imaginary time. The elliptic nature of the evolution operator restricts standard splittings to low order, ¿ < 3, because of the unavoidable appearance of negative fractional timesteps that correspond to the ill-posed integration backwards in time. The inclusion of modified potentials lifts the order barrier up to ¿ < 5. Both restrictions can be circumvented using complex fractional time-steps with positive real part and sixthorder methods optimized for near-integrable Hamiltonians are presented. Conclusions and pointers to further research are detailed in Chapter 6, with a special focus on optimal quantum control. / Bader, PK. (2014). Geometric Integrators for Schrödinger Equations [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/38716 / TESIS / Premios Extraordinarios de tesis doctorales
3

The Hubbard model on a honeycomb lattice with fermionic tensor networks

Schneider, Manuel 09 December 2022 (has links)
Supervisor at Deutsches Elektronen-Synchrotron (DESY) in Zeuthen: Dr. Habil. Karl Jansen / Mit Tensor Netzwerken (TN) untersuchen wir auf einem hexagonalen Gitter das Hubbard-Modell mit einem chemischen Potential. Wir zeigen, dass ein TN als Ansatz für die Zustände des Modells benutzt werden kann und präsentieren die berechneten Eigenschaften bei niedrigen Energien. Unser Algorithmus wendet eine imaginäre Zeitentwicklung auf einen fermionischen projected engangled pair state (PEPS) auf einem endlichen Gitter mit offenen Randbedingungen an. Der Ansatz kann auf einen spezifischen fermionischen Paritätssektor beschränkt werden, was es uns ermöglicht, den Grundzustand und den Zustand mit einem Elektron weniger zu simulieren. Mehrere in unserer Arbeit entwickelte Verbesserungen des Algorithmus führen zu einer erheblichen Steigerung der Effizienz und Genauigkeit. Wir messen Erwartungswerte mit Hilfe eines boundary matrix product state. Wir zeigen, dass Observablen in dieser Näherung mit einer weniger starken Trunkierung, als in der Literatur erwartet wird, berechnet werden können. Dies führt zu einer erheblichen Reduzierung der numerischen Kosten des Algorithmus. Für verschiedene Stärken der lokalen Wechselwirkung, sowie für mehrere chemische Potentiale berechnen wir die Energie, die Teilchenzahl und die Magnetisierung mit guter Genauigkeit. Wir zeigen die Abhängigkeit der Teilchenzahl vom chemischen Potential und berechnen die Energielücke. Wir demonstrieren die Skalierbarkeit zu großen Gittern mit bis zu 30 × 15 Gitterpunkten und machen Vorhersagen in einem Teil des Phasenraums, der für Monte-Carlo nicht zugänglich ist. Allerdings finden wir auch Limitierungen des Algorithmus aufgrund von Instabilitäten, die die Berechnungen im Paritätssektor behindern, welcher orthogonal zum Grundzustand ist. Wir diskutieren Ursachen und Indikatoren und schlagen Lösungen vor. Unsere Arbeit bestätigt, dass TN genutzt werden können, um den niederenergetischen Sektors des Modells zu erforschen. Dies eröffnet den Weg zu einem umfassenden Verständnis des Phasendiagramms. / Using tensor network (TN) techniques, we study the Hubbard model on a honeycomb lattice with a chemical potential, which models the electron structure of graphene. In contrast to Monte Carlo methods, TN algorithms do not suffer from the sign problem when a chemical potential is present. We demonstrate that a tensor network state can be used to simulate the model and present the calculated low energy properties of the Hubbard model. Our algorithm applies an imaginary time evolution to a fermionic projected entangled pair state (PEPS) on a finite lattice with open boundary conditions. The ansatz can be restricted to a specific fermionic parity sector which allows us to simulate the ground state and the state with one electron less. Several improvements of the algorithm developed in our work lead to a substantial performance increase of the efficiency and precision. We measure expectation values with a boundary matrix product state and show that observables can be calculated with a lower bond dimension of this approximation than expected from the literature. This decreases the numerical costs of the algorithm significantly. For varying onsite interactions and chemical potentials we calculate the energy, particle number and magnetization with good precision. We show the dependence of the particle number on the chemical potential and compute the single particle gap. We demonstrate the scalability to large lattices of up to 30 × 15 sites and make predictions in a part of the phase space that is not accessible to Monte Carlo methods. However, we also find limitations of the algorithm due to instabilities that spoil the calculations in the parity sector orthogonal to the ground state. We discuss the causes and indicators of such instabilities and propose solutions. Our work validates that TNs can be utilized to study the low energy properties of the Hubbard model on a honeycomb lattice with a chemical potential, thus opening the road to finally understand its phase diagram.

Page generated in 0.0434 seconds