• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maintenance Data Augmentation, using Markov Chain Monte Carlo Simulation : (Hamiltonian MCMC using NUTS)

Roohani, Muhammad Ammar January 2024 (has links)
Reliable and efficient utilization and operation of any engineering asset require carefully designed maintenance planning and maintenance related data in the form of failure times, repair times, Mean Time between Failure (MTBF) and conditioning data etc. play a pivotal role in maintenance decision support. With the advancement in data analytics sciences and industrial artificial intelligence, maintenance related data is being used for maintenance prognostics modeling to predict future maintenance requirements that form the basis of maintenance design and planning in any maintenance-conscious industry like railways. The lack of such available data creates a no. of different types of problems in data driven prognostics modelling. There have been a few methods, the researchers have employed to counter the problems due to lack of available data. The proposed methodology involves data augmentation technique using Markov Chain Monte Carlo (MCMC) Simulation to enhance maintenance data to be used in maintenance prognostics modeling that can serve as basis for better maintenance decision support and planning.

Page generated in 0.0634 seconds