• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bayliss-Hillman adducts as scaffolds for the construction of novel compounds with medicinal potential

Idahosa, Kenudi Christiana January 2012 (has links)
This project has focused on exploring the application of Baylis-Hillman (BH) {a.k.a. Morita-Baylis-Hillman (MBH)} scaffolds in the construction of various compounds with medicinal potential. A series of 2-nitrobenzaldehydes has been treated under BH conditions, with two different activated alkenes, viz., (MVK) and methyl acrylate, using (DABCO) or (3-HQ) as catalyst. While most of the BH reactions were carried out at room temperature, some reactions were conducted using microwave irradiation. The resulting BH adducts have been subjected to dehydration, conjugate addition and allylic substitution to obtain appropriate intermediates, which have been used in turn, to synthesize possible lead compounds, viz., cinnamate esters as HIV-1 integrase inhibitors, 3-(aminomethyl)quinolines and quinolones as anti-malarials and cinnamate ester-AZT conjugates as dual-action HIV-1 integrase-reverse transcriptase (IN-RT) inhibitors. Conjugate addition reactions of methyl acrylate-derived BH β-hydroxy esters with the amines, piperidine, propargylamine and 2-amino-5-(diethylamino)pentane, has afforded a range of products as diastereomeric mixtures in moderate to excellent yields. Catalytic hydrogenation of the aminomethy β-hydroxy esters derivatives, using a palladium-oncarbon (Pd-C) catalyst, has afforded the corresponding, novel 3-aminomethyl-2- quinolone derivatives in moderate yields. Effective allylic substitution reactions of the MVK-derived BH β-hydroxy ketones (via a conjugate addition-elimination pathway) using in situ-generated HCl has afforded the corresponding α-chloromethyl derivatives, which have been reacted with various amines, including piperidine, piperazine, propargylamine and 2-amino-5-(diethylamino)pentane, to yield α-aminomethyl derivatives. Catalytic hydrogenation of selected α-aminomethyl derivatives, using a Pd-C catalyst, has afforded the corresponding, novel 3- (aminomethyl)-2-methylquinoline derivatives in low to moderate yields. A bioassay, conducted on a 6-hydroxy-2-methyl-3-[(piperidin-1-yl)methyl]quinoline isolated early in the study indicated anti-malarial activity and prompted further efforts in the synthesis of analogous compounds. Reaction of the methyl acrylate-derived BH adducts with POCl3 has provided access to α-(chloromethyl)cinnamate ester derivatives, which have been aminated to afford α- (aminomethyl)cinnamate ester derivatives as potential HIV-1 integrase inhibitors. The α- (propargylaminomethyl)cinnamates were used, in turn, as substrates for the “click chemistry” reaction with 3'-azido-3'-deoxythymidine (AZT– an azide and an established reverse transcriptase HIV-1 inhibitor) to afford cinnamate ester-AZT conjugates as potential dual-action HIV-1 integrase-reverse transcriptase (IN-RT) inhibitors. Computer modelling and docking studies of a cinnamate ester-AZT conjugate into the HIV-1 integrase and reverse transcriptase active-sites revealed potential hydrogen-bonding interactions with amino acid residues within the receptor cavities. The isolated products have been appropriately characterized using IR, 1- and 2-D NMR and HRMS techniques, while elucidation of the stereochemistry of the double bond in the BH-derived halomethyl derivatives has been assigned on the basis of NOE, computer modelling and X-ray crystallographic data.
2

A step forward in defining Hsp90s as potential drug targets for human parasitic diseases

Faya, Ngonidzashe January 2014 (has links)
Parasitic diseases remain a health burden affecting more than 500 million people worldwide with malaria having the highest mortality rate. The parasites can be transferred to the human bodies either through the mouth by ingestion of contaminated food and water or through the skin by bug bites or direct contact to environments harbouring them. Epidemiological control seems to be impossible since there is failure to control the insect vectors as well as practice of hygiene. Therefore, this has led to the development of a number of vaccines, chemotherapy and disease control programs. However, parasites have increasingly developed resistance to traditionally used anti-parasitic drugs and due to that fact there is need for alternative medication for parasitic diseases. Heat shock protein 90 (Hsp90) facilitates the folding of proteins in all living cells and their role is more important to parasites because of their environmental changes, from vector to host. Hsp90s play a major role; therefore this justifies the need for a deeper analysis of the parasitic Hsp90s. Recent studies have revealed that, the Plasmodium sp. Hsp90 has an extended linker region which increases the protein’s affinity for ATP and its inhibitors. Therefore we hypothesize that there are also significant features in other parasitic Hsp90s which would lead to Hsp90 being defined as potential drug targets. In the present study an attempt was made to gain more insight into the differences in primary structure of human and parasitic Hsp90s. The sequences were retrieved from the NCBI database and analysis was done in three groups basing on the localization of the Hsp90. The physicochemical properties were calculated and in every group, the protozoan Hsp90s showed significant differences when compared to the human orthologs. Multiple sequence alignments (MSA) showed that endoplasmic reticulum Hsp90s have an extended region in the middle domain indicating their ability to bind to a unique subset of client proteins. Sequence identities between the human and parasites showed that the protozoan Hsp90s are less related to the human Hsp90s as compared to the other parasites. Likewise, motif analysis showed the trypanosomatids and apicomplexan groups have their own unique set of motifs and they were grouped together in the phylogenetic analysis. Phylogenetic analysis also showed that, the protozoan Hsp90s forms their own clades in each group while the helminths did not form in endoplasmic reticulum group. In this study, we concluded that, Hsp90 can be a potential drug target for the protozoan species and more specifically those from the apicomplexan and trypanosomatids groups.

Page generated in 0.1513 seconds