• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal (control of) intervention strategies for malaria epidemic in Karonga district, Malawi

Mwamtobe, Peter Mpasho Mwamusaku 06 May 2015 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. December 2, 2014. / Malaria is a public health problem for more than 2 billion people globally. About 219 million cases of malaria occur worldwide and 660, 000 people die, most (91%) in the African region despite decades of efforts to control the disease. Although the disease is preventable, it is life-threatening and parasitically transmitted by the bite of the female Anopheles mosquito. A deterministic mathematical model with intervention strategies is developed in order to investigate the effectiveness, optimal control and cost effectiveness of Indoor Residual Spraying (IRS), Insecticide Treated Nets (ITNs) and treatment on the transmission dynamics of malaria in Karonga District, Malawi. The effective reproduction number is analytically computed, and existence and stability conditions of the equilibria are explored. The model does not exhibit backward bifurcation. A structured questionnaire was developed, a one-toone interview with a randomly sampled set of individuals conducted to assess the knowledge level of inhabitants of Karonga district about the disease in general and their awareness and application of the intervention strategies. Applying Pontryagin’s Maximum Principle which uses both the Langragian and Hamiltonian principles with respect to a constant time dependent, we derive the necessary conditions for the optimal control of the disease. An economic evaluation of the strategies is carried out by performing a cost-effectiveness analysis to determine the most cost-effective combination of the three intervention measures. The incremental cost-effectiveness ratio (ICER) is calculated in order to compare the costs and effectiveness of all the possible combinations of the three measures. The results show that the combination of treatment, ITNs and IRS is the most cost-effective combination strategy for malaria control. Numerical simulations indicate that the prevention strategies lead to the reduction of both the mosquito population and infected human individuals. Effective treatment consolidates the prevention strategies. Thus, malaria can be eradicated by deployment of combined strategies such as vector control via ITNs and IRS complemented with timely treatment of infected people.
2

The plasmodium falciparum exported Hsp40 co-chaperone, PFA0660w

Daniyan, Michael Oluwatoyin January 2014 (has links)
Plasmodium falciparum is the pathogen that is responsible for the most virulent, severe and dangerous form of human malaria infection, accounting for nearly a million deaths every year. To survive and develop in the unusual environment of the red blood cells, the parasite causes structural remodelling of the host cell and biochemical changes through the export of virulence factors. Among the exportome are the molecular chaperones of the heat shock protein family, of which Hsp40s and Hsp70s are prominent. PF A0660w, a type II P. falciparum Hsp40, has been shown to be exported in complex with PfHsp70-x into the infected erythrocyte, suggesting possible functional interactions. However, the chaperone properties of PF A0660w and its interactions with proteins of parasite and human origin are yet to be investigated. Using a codon optimised coding region, PF A0660w was successfully expressed in E. coli M 15 [pREP4] cells. However, the expressed protein was largely deposited as insoluble pellet, and analysis of the pellets revealed a high percentage of PF A0660w, characteristic of inclusion body formation. PF A0660w was purified from inclusion bodies using additive enhanced solubilisation and refolding buffers followed by nickel affinity chromatography. SDS-PAGE and western analysis revealed that the purified protein was of high purity. Size exclusion chromatography showed that the protein existed as a monomer in solution and the secondary structure analysis using Fourier transformed infrared spectroscopy (FTIR) confirmed the success of the refolding approach. Its monomeric state suggests that PF A0660w may be functionally different from other Hsp40 that form dimers and that for PF A0660w, dimer formation may not be needed to maintain the stability of the protein in solution, but may occur in response to functional necessities during its interaction with partner Hsp70. PFA0660w was able to significantly stimulate the ATPase activity ofPfl-Isp70-x but not Pfl-Isp70-1 or human Hsp70 (HsHsp70), suggesting a specific functional interaction. Also, PF A0660w produced a dose dependent suppression of rhodanese aggregation and cooperated with Pfl-Isp70-1, PfHsp70-x and HsHsp70 to cause enhanced aggregation suppression. Its ability to independently suppress aggregation may help to maintain substrates in an unfolded conformation for eventual transfer to partner Hsp70s during refolding processes. Also, the in vivo characterisation using a PF A0660w peptide specific antibody confirmed that PF A0660w was exported into the cytosol of infected erythrocytes. Its lack of induction upon heat shock suggests that PF A0660w may not be involved in the response of the parasite to heat stress. Overall, this study has provided the first heterologous over-expression, purification and biochemical evidence for the possible functional role of PF A0660w, and has thereby provided the needed background for further exploration of this protein as a potential target for drug discovery.
3

Characterisation of a plasmodium falciparum type II Hsp40 chaperone exported to the cytosol of infected erythrocytes

Maphumulo, Philile Nompumelelo January 2013 (has links)
Heat Shock 40 kDa proteins (Hsp40s) partner with heat shock 70 kDa proteins (Hsp70s) in facilitating, among other chaperone activities; correct protein transport, productive protein folding and assembly within the cells; under both normal and stressful conditions. Hsp40 proteins regulate the ATPase activity of Hsp70 through interaction with the J-domain. Plasmodium falciparum Hsp70s (PfHsp70s) do not contain a Plasmodium export element (PEXEL) sequence although PfHsp70-1 and PfHsp70-3 have been located outside of the parasitophorous vacuole. Studies reveal that a type I P. falciparum (PfHsp40) chaperone (PF14_0359) stimulates the rate of ATP hydrolysis of the cytosolic PfHsp70 (PfHsp70-1) and that of human Hsp70A1A. PFE0055c is a PEXEL-bearing type II Hsp40 that is exported into the cytosol of P. falciparum-infected erythrocytes; where it potentially interacts with human Hsp70. Studies reveal that PFE0055c associates with structures found in the erythrocyte cytosol termed “J-dots” which are believed to be involved in trafficking parasite-encoded proteins through the erythrocyte cytosol. If P. falciparum exports PFE0055c into the host cytosol, it may be proposed that it interacts with human Hsp70, making it a possible drug target. The effect of PFE0055c on the ATPase activity of human Hsp70A1A has not been previously characterised. Central to this study was bioinformatic analysis and biochemical characterisation PFE0055c using an in vitro (ATPase assay) approach. Structural domains that classify PFE0055c as a type II Hsp40 were identified with similarity to two other exported type II PfHsp40s. Plasmids encoding the hexahistidine-tagged versions of PFE0055c and human Hsp70A1A were used for the expression and purification of these proteins from Escherichia coli. Purification was achieved using nickel affinity chromatography. The urea-denaturing method was used to obtain the purified PFE0055c whilst human Hsp70A1A was purified using the native method. PFE0055c could stimulate the ATPase activity of alfalfa Hsp70, although such was not the case for human Hsp70A1A in vitro.

Page generated in 0.1185 seconds