• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of Polycyclic Aromatic Hydrocarbons, Metals and Polycyclic Aromatic Hydrocarbon/Metal Mixtures on Rat Corpus Luteal Cells and Placental Cell Line, JEG-3

Nykamp, Julie Ann January 2007 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that can be modified to oxygenated PAH (oxyPAHs) derivatives. It is well known that oxyPAHs tend to be much more reactive than their parent compounds. Toxicity can be attributed to direct interaction with target molecules or generation of reactive oxygen species (ROS). Metals are another class of contaminant found ubiquitously throughout the environment. Some metals are toxic at levels below the 1:1 ratio predicted by the biotic ligand model and are thought to manifest toxicity through ROS generation. Often metals and PAHs occur as co-contaminants in industrialized environments, yet little is known about their potential co-toxicity or mechanisms of action in mammalian reproductive function. Previously, we described that a PAH, 9, 10-phenanthrenequinone (PHEQ), inhibited LH-stimulated progesterone secretion in dispersed rat corpus luteal (CL) cells (Nykamp et al., 2001). Viability was decreased in CL cells exposed to PHEQ and 1,2-dihydroxy-anthraquinone (1,2-dhATQ), but not their parent compounds phenanthrene (PHE) or anthracene (ANT). Similarly, LH-stimulated progesterone production in CL cells was inhibited by PHEQ and 1,2-dhATQ, but not PHE. Further investigation revealed that PHEQ, but not PHE, ANT nor 1,2-dhATQ generated ROS in CL cells. Viability experiments were repeated using the choriocarcinoma cell line JEG-3 with similar results. Various metals were assessed for their toxicity to both CL and JEG-3 cells. The endpoints used to measure viability were metabolic activity and membrane integrity. In general, metabolic activity was a more sensitive indicator of toxicity than membrane integrity. The order of toxicity for metals in CL cells was Hg2+ > Cd2+ > Zn2+ > Ni2+ > Cu2+ for metabolic activity and Hg2+ ≈ Zn2+ > Cd2+ > Cu2+ > Ni2+ for membrane integrity. Only Hg2+ and Cu2+ were tested in JEG-3 cells. While Cu2+ was non-toxic, EC50s for Hg2+ metabolic activity and membrane integrity were 20 mM and 23 mM, respectively. Experiments were designed to study the mixtures of metals and PAHs on viability, ROS production, and LH-stimulated progesterone production in CL cells. Mixtures of each metal with either PHEQ or 1,2-dhATQ were incubated with CL cells and their effect on metabolic activity and membrane integrity assessed. Generally, most metal/oxyPAH mixtures displayed only additive toxicity. However, mixtures of Cu2+ and PHEQ showed synergistic toxicity to both metabolic activity and membrane integrity. Mixture studies in JEG-3 cells used only combinations of Cu2+ or Hg2+ with PHEQ or 1,2-dhATQ. Similar results to metabolic activity and membrane integrity in CL cells were observed. Mixtures of Cu2+ and PHEQ or 1,2-dhATQ were tested in CL cells for their effect on LH-stimulated progesterone secretion and ROS production. Additive effects were observed in both LH-stimulated progesterone secretion and ROS production for Cu2+/1,2-dhATQ mixtures while synergistic effects for both parameters were seen with Cu2+/PHEQ. Efforts to determine the site of action for mixtures of Cu2+/PHEQ involved adding the cholesterol analogue, 22-OH cholesterol (22-OHC) to CL cells in the absence of LH. Cytochrome P450 side-chain cleavage (CYP450scc) enzyme operates constitutively and the addition of 22-OHC to CL cells resulting in a 5-fold increase in progesterone production without added LH. Kinetic assays with 22-OHC show that while progesterone secretion was inhibited with PHEQ addition alone, a further significant reduction with both Cu2+ and PHEQ was not observed. The use of forskolin, an activator of adenylate cyclase, did not show any significant enhancement of progesterone secretion with the addition of Cu2+/PHEQ compared to PHEQ alone. The potential targets of Cu2+/PHEQ mixture include any step in the steroidogenic cascade from activation of protein kinase A onward with the proteins of the mitochondria, cytochrome P450 side chain cleavage enzyme and steroidogenic acute regulatory protein, being the most likely. Differential display polymerase chain reaction (ddPCR) was a molecular approach taken to determine the effect of PHEQ on JEG-3 gene expression. The genes whose expression appeared to be up-regulated with PHEQ exposure were serine protease inhibitor, Alu repeat sequence, heterogeneous ribonuclear ribonucleoprotein C (hnRNP C), eukaryotic translation initiation factor 3 (eIF3), nucleoporin-like protein, eukaryotic translation elongation factor 1a1 (eEF1 a 1), autophagy-linked FYVE domain (Alfy), spectrin, and proteasome. Apparent down-regulated genes in JEG-3 cells after PHEQ exposure included poly(ADP-ribose) polymerase 10 (PARP10), polyglutamine binding protein-1 (PQBP-1), heterogeneous ribonuclear ribonucleoprotein C (hnRNP C), eukaryotic translation initiation factor 5A (eIF5A), and keratin. In both cell types, oxyPAHs were more toxic than their parent compounds. Metals showed greater toxicity to metabolic activity than to membrane integrity. Of the combinations tested, only PHEQ and Cu2+ exhibited synergistic toxicity. ROS generation was the likely mechanism behind PHEQ/Cu2+ toxicity. Both cell types used represent critical roles in human reproductive health. The proper production of progesterone, a critical hormone for the maintenance of pregnancy in mammals, represents a unique endpoint for the assessment of toxicity. These results illustrate the need to study modified oxyPAHs, metals and metal/oxyPAH mixtures for their potential impact on human reproductive health.
2

Effects of Polycyclic Aromatic Hydrocarbons, Metals and Polycyclic Aromatic Hydrocarbon/Metal Mixtures on Rat Corpus Luteal Cells and Placental Cell Line, JEG-3

Nykamp, Julie Ann January 2007 (has links)
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that can be modified to oxygenated PAH (oxyPAHs) derivatives. It is well known that oxyPAHs tend to be much more reactive than their parent compounds. Toxicity can be attributed to direct interaction with target molecules or generation of reactive oxygen species (ROS). Metals are another class of contaminant found ubiquitously throughout the environment. Some metals are toxic at levels below the 1:1 ratio predicted by the biotic ligand model and are thought to manifest toxicity through ROS generation. Often metals and PAHs occur as co-contaminants in industrialized environments, yet little is known about their potential co-toxicity or mechanisms of action in mammalian reproductive function. Previously, we described that a PAH, 9, 10-phenanthrenequinone (PHEQ), inhibited LH-stimulated progesterone secretion in dispersed rat corpus luteal (CL) cells (Nykamp et al., 2001). Viability was decreased in CL cells exposed to PHEQ and 1,2-dihydroxy-anthraquinone (1,2-dhATQ), but not their parent compounds phenanthrene (PHE) or anthracene (ANT). Similarly, LH-stimulated progesterone production in CL cells was inhibited by PHEQ and 1,2-dhATQ, but not PHE. Further investigation revealed that PHEQ, but not PHE, ANT nor 1,2-dhATQ generated ROS in CL cells. Viability experiments were repeated using the choriocarcinoma cell line JEG-3 with similar results. Various metals were assessed for their toxicity to both CL and JEG-3 cells. The endpoints used to measure viability were metabolic activity and membrane integrity. In general, metabolic activity was a more sensitive indicator of toxicity than membrane integrity. The order of toxicity for metals in CL cells was Hg2+ > Cd2+ > Zn2+ > Ni2+ > Cu2+ for metabolic activity and Hg2+ ≈ Zn2+ > Cd2+ > Cu2+ > Ni2+ for membrane integrity. Only Hg2+ and Cu2+ were tested in JEG-3 cells. While Cu2+ was non-toxic, EC50s for Hg2+ metabolic activity and membrane integrity were 20 mM and 23 mM, respectively. Experiments were designed to study the mixtures of metals and PAHs on viability, ROS production, and LH-stimulated progesterone production in CL cells. Mixtures of each metal with either PHEQ or 1,2-dhATQ were incubated with CL cells and their effect on metabolic activity and membrane integrity assessed. Generally, most metal/oxyPAH mixtures displayed only additive toxicity. However, mixtures of Cu2+ and PHEQ showed synergistic toxicity to both metabolic activity and membrane integrity. Mixture studies in JEG-3 cells used only combinations of Cu2+ or Hg2+ with PHEQ or 1,2-dhATQ. Similar results to metabolic activity and membrane integrity in CL cells were observed. Mixtures of Cu2+ and PHEQ or 1,2-dhATQ were tested in CL cells for their effect on LH-stimulated progesterone secretion and ROS production. Additive effects were observed in both LH-stimulated progesterone secretion and ROS production for Cu2+/1,2-dhATQ mixtures while synergistic effects for both parameters were seen with Cu2+/PHEQ. Efforts to determine the site of action for mixtures of Cu2+/PHEQ involved adding the cholesterol analogue, 22-OH cholesterol (22-OHC) to CL cells in the absence of LH. Cytochrome P450 side-chain cleavage (CYP450scc) enzyme operates constitutively and the addition of 22-OHC to CL cells resulting in a 5-fold increase in progesterone production without added LH. Kinetic assays with 22-OHC show that while progesterone secretion was inhibited with PHEQ addition alone, a further significant reduction with both Cu2+ and PHEQ was not observed. The use of forskolin, an activator of adenylate cyclase, did not show any significant enhancement of progesterone secretion with the addition of Cu2+/PHEQ compared to PHEQ alone. The potential targets of Cu2+/PHEQ mixture include any step in the steroidogenic cascade from activation of protein kinase A onward with the proteins of the mitochondria, cytochrome P450 side chain cleavage enzyme and steroidogenic acute regulatory protein, being the most likely. Differential display polymerase chain reaction (ddPCR) was a molecular approach taken to determine the effect of PHEQ on JEG-3 gene expression. The genes whose expression appeared to be up-regulated with PHEQ exposure were serine protease inhibitor, Alu repeat sequence, heterogeneous ribonuclear ribonucleoprotein C (hnRNP C), eukaryotic translation initiation factor 3 (eIF3), nucleoporin-like protein, eukaryotic translation elongation factor 1a1 (eEF1 a 1), autophagy-linked FYVE domain (Alfy), spectrin, and proteasome. Apparent down-regulated genes in JEG-3 cells after PHEQ exposure included poly(ADP-ribose) polymerase 10 (PARP10), polyglutamine binding protein-1 (PQBP-1), heterogeneous ribonuclear ribonucleoprotein C (hnRNP C), eukaryotic translation initiation factor 5A (eIF5A), and keratin. In both cell types, oxyPAHs were more toxic than their parent compounds. Metals showed greater toxicity to metabolic activity than to membrane integrity. Of the combinations tested, only PHEQ and Cu2+ exhibited synergistic toxicity. ROS generation was the likely mechanism behind PHEQ/Cu2+ toxicity. Both cell types used represent critical roles in human reproductive health. The proper production of progesterone, a critical hormone for the maintenance of pregnancy in mammals, represents a unique endpoint for the assessment of toxicity. These results illustrate the need to study modified oxyPAHs, metals and metal/oxyPAH mixtures for their potential impact on human reproductive health.
3

The role of two sex chromosome associated proteins, SCML1 and ANKRD31, in gametogenesis in mice

Papanikos, Frantzeskos 30 January 2020 (has links)
Meiosis is a specialized cell division that produces haploid cells (gametes) from diploid progenitors. During meiosis parental chromosomes (homologs) need to pair, synapse and eventually segregate. Faithful chromosome segregation depends on chromosome recombination. In the beginning of prophase I programmed double strand breaks (DSBs) are introduced in meiotic cells by SPO11 enzyme. DSBs are positioned at hotspot sites that are specified by that action of DNA-binding histone methyltransferase PRDM9. Specific enzymes act at the site of breaks to create 5’ single stranded DNA ends. With the assistance of the strand exchange proteins DMC1 and RAD51 these ends invade homologous DNA sequence and DSB repair is initiated. DSB repair can be completed either as a crossover (reciprocal exchange of DNA) or as a non-crossover. Crossover events lead to the formation of chiasmata between homologs and ensure proper segregation during the first meiotic division. An interesting feature in male meiosis is the XY chromosomes. The shared region between sex chromosomes is short and is called pseudoautosomal region (PAR). Due to their large non synapsed region, XY chromosomes need to be transcriptionally silenced. Thus they are covered with the phosphorylated histone variant H2AX (γH2AX) forming the so called sex body. PAR region has higher density of DSBs than autosomes and it had been shown that sex chromosomes undergo delayed homologous pairing. Nevertheless little is known how meiotic recombination is regulated in PAR region of sex chromosomes. In close proximity with sex body it has been found a structure named dense body (DB). There are few reports suggesting that DB contains RNAs/proteins but no DNA. Its role in meiosis was unclear because no structural component had been described. In the present thesis the role of two meiotic expressed genes is described. In our group after performing RNA screens we identified several genes that are highly expressed during meiotic prophase I. Based on the expression profile we selected polycomb-related sex comb on midleg like 1 (Scml1) gene and the ankyrin repeat domain 31 (Ankrd31) to study their role in mammalian meiosis.:List of figures i List of abbreviations ii 1. Introduction 1 1.1 Gametogenesis 1 1.2 Meiotic prophase I 2 1.2.1 Meiotic recombination 4 1.2.2 Regulation of meiotic recombination 7 1.2.2.1 Meiotic recombination hotspots and PRDM9 activity 7 1.2.2.2 Meiotic surveillance mechanisms 8 1.3 Unique properties of XY recombination 9 1.4 Sex chromatin associated structure: The dense body 10 1.5 Aim of the thesis 11 2. Publications 12 3. Discussion 92 4. Summary 98 5. References 102 Acknowledgements 108 Declarations 109
4

Studies On Molecular Analysis Of Capacitation Associated Protein Tyrosine Phosphorylation In Hamster Spermatozoa

Dasari, Santosh Kumar 07 1900 (has links) (PDF)
In mammals, freshly ejaculated spermatozoa do not possess the ability to fertilize a mature oocyte. They acquire fertilization competence upon residing for a period of time in the female reproductive tract. The physiological changes that bring about these time-dependent changes in motility pattern and acquisition of fertilizing ability of spermatozoa are collectively referred to as capacitation, culminating in sperm hyperactivation. Capacitation-associated increase in sperm protein tyrosine phosphorylation (PYP), exhibited by mammalian sperm, is one of the major downstream events, regulating hyperactivated motility. However, it is still unclear which are the tyrosine kinases and phosphatases involved in modulating the capacitation-associated increase in global PYP. In order to determine this, our laboratory earlier showed the role of PYP in hamster sperm capacitation using a specific EGFR protein tyrosine kinase (PTK) inhibitor, tyrphostin A47 (TP-47). Interestingly, inhibition of capacitation by 0.5 mM TP-47 was associated with induction of a slow circular motility pattern, accompanied by inhibition of PYP of certain proteins (Mr. 45,000-52,000), localized to the principle piece of the sperm flagellum. Two such proteins, hypo-tyrosine phosphorylated, were found to be tektin-2 and ODF-2, using 2D-PAGE followed by MS/MS analysis. Interestingly, a global phosphoproteome analysis of human spermatozoa showed that PYP changes are associated with capacitation and asthenospermic condition in infertile men is attributed to the failure of capacitation-associated increase in PYP. Such individuals exhibited impaired sperm motility. There is a need to understand the exact mechanism of phosphorylation of sperm flagellar proteins, which is necessary to assess sperm’s ability to fertilize the mature oocyte. Therefore, the focus of the present work was to elucidate the role of receptor tyrosine kinases (RTKs) and the non-receptor tyrosine kinases (NRTKs) in mammalian (hamster) sperm capacitation. Recent studies have shown that apart from EGFR other RTKs like IGF1R, FGFR, VEGFR, MuSK, TrkA are expressed in mammalian spermatozoa and actively involved in sperm capacitation. However, there is very little information available in the context of sperm capacitation and associated PYP. Therefore, attempts were made to understand the role of various RTKs (IGF1R, FGFR and VEGFR) in hamster sperm capacitation and associated PYP. Initially, the role of IGF1R tyrosine kinase during sperm capacitation was studied. Immunolocalization of IGF1R in spermatozoa showed a strong signal in the sperm acrosome and the principal piece of the sperm flagellum. Inhibition of IGF1R kinase with an IGF1R-specific inhibitor TP-1-O-Me-AG538 (TP-538) showed inhibitory effect on sperm capacitation and the associated hyperactivation. But, inhibitors of FGFR and VEGFR tyrosine kinases did not show such an effect. Interestingly, inhibition of IGF1R by TP538 was associated with inhibition of PYP of certain proteins (Mr. 45,000-120,000), localized to head, mid piece and principle piece regions of the sperm flagellum. Phosphoproteomic analysis using 2D-PAGE-western blot with anti-phosphotyrosine antibodies identified 17 differentially phosphorylated protein spots. Out of the 17 spots, 12 were identified by MALDI-MS/MS analysis. The proteins identified to be differentially phosphorylated, upon inhibition of IGF1R, were PDHE1, ODF-2, Tubulin β 2C chain, PDHE2 and ATP synthase β subunit. The RTKs being present in the membrane level may not be directly involved in the phopshorylation of downstream target proteins associated with the mitochondrial membrane, sperm axonemal structures and outer dense fibers. Therefore, the RTKs may interact directly or indirectly with the downstream NRTKs, which may be involved in the phosphorylation of target sperm proteins. Till date, six different families of NRTKs are shown to be expressed in mammalian spermatozoa. The major family of NRTKs involved in sperm function is the Src family of kinases. However, there is very little information available in the context of sperm capacitation and the associated PYP. Therefore, studies were carried out to understand the role of Src family of NRTKs in sperm capacitation and associated PYP. Presence of active Src signaling was observed by the immunolocalization of activated Src (pY416) in the acrosome, mid piece and the principal piece regions of the sperm flagellum. Inhibition of Src family of kinase with a specific Src family kinase inhibitor PP2, showed inhibition of sperm capacitation and the associated hyperactivation. Inhibition of Src family of kinases with PP2 was associated with decrease in PYP of several proteins (Mr. 45,000-120,000), localized mainly to the mid piece region, followed by the principle piece region of the sperm flagellum. Phosphoproteomic analysis using 2D-PAGE-western blot with anti-phosphotyrosine antibodies identified 38 differentially phosphorylated protein spots. Out of the 38 spots, 16 were identified by MALDIMS/MS analysis and these corresponded to seven proteins which included PDHE1, ODF-2, Tubulin β 2C chain, Tektin-2, GAPDS, PDHE2 and ATP synthase β subunit. Additionally, the biochemical and molecular characteristics of the identified proteins were also studied. Bioinformatic analysis predicted the presence of phosphorylation motifs for several kinases and interestingly, all the proteins identified had a Src kinase motif. Comparing the current observations and the previous work in the laboratory, two proteins ODF-2 and Tektin-2 were found to be regulated by EGFR, IGF1R and Src family of kinases. Therefore, characterization of the capacitation-associated tyrosine phoposphorylated proteins ODF-2 and Tektin-2 was performed. By employing PCR and Northern blotting techniques, the presence of the transcripts of both the proteins was shown. Additionally, the ontogeny of expression of ODF2 and Tektin-2 in hamster testis development was studied and the results indicated that the expression of both the proteins started from week 3 onwards till week 8. To confirm the meiotic stage-associated expression of ODF-2 and Tektin-2, germ cells were sorted based on their DNA content. ODF-2 and Tektin-2 transcripts were first expressed in the meiotic germ cells (pachytene spermatocytes) and their expression was upregulated in the post-meiotic germ cells (round spermatids). Sequential extraction of sperm proteins showed that, Tektin-2 was majorly extracted out in the Triton X-100 and DTT fraction, whereas, ODF-2 was maximally extracted in the presence of urea and DTT. In conclusion, these observations indicate that IGF1R and Src family of tyrosine kinases are critical for mammalian sperm capacitation and associated global PYP. Inhibition of sperm capacitation was associated with hypo-tyrosine-phospohorylation of certain proteins associated with mitochondrial membrane, axonemal structures and outer dense fibers of the sperm flagellum. Future work can be directed towards understanding the role of other RTKs and NRTKs involved in sperm capacitation and the molecular characterization of hypophosphorylated proteins critical for sperm function and its fertilization competence.

Page generated in 0.11 seconds