• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 170
  • 25
  • 14
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 1
  • Tagged with
  • 552
  • 144
  • 129
  • 116
  • 95
  • 78
  • 77
  • 71
  • 65
  • 63
  • 53
  • 48
  • 38
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Nitrogen Efficiency and Regulation of Protein Synthesis in Lactating Dairy Cows

Rius, Agustin Gregorio 01 June 2009 (has links)
Dairy herds are major contributors to N pollution because 70% of the N intake is lost to the environment and 30% or less is retained in milk protein. Plasma amino acids (AA) that are not used for protein synthesis in mammary glands (MG) are catabolized in post splanchnic tissues (liver plus gastrointestinal tract, pancreas, spleen, portal system, and associated adipose tissue) and two thirds of the net supply of essential AA (EAA) are cleared in splanchnic tissues. Thus, increasing AA capture in MG would be expected to reduce AA catabolism and thereby increase efficiency of AA utilization. The objectives of the work presented in this dissertation were to test the effect of energy and N intake on cell regulatory mechanisms, nutrient kinetics, milk, milk protein yield, and N efficiency in dairy cows. The aim of the first study was to test whether metabolizable protein (MP) and dietary energy exerted independent effects on milk protein synthesis and postabsorptive N efficiency. Forty mid-lactation cows (32 multiparous Holstein and 8 primiparous Holstein x Jersey cross-breds) were used in a complete randomized design with a 2 x 2 factorial arrangement of diets. Cows were assigned to one of four dietary treatments: high-energy, high-protein (HE/HP); high-energy, low-protein (HE/LP); low-energy, high-protein (LE/HP); and low-energy, low-protein (LE/LP). Energy concentrations were 1.55 (HE/HP and HE/LP) or 1.44 (LE/HP and LE/LP) Mcal NEL/kg DM according to the NRC model. Changes in predicted MP were achieved by feeding diets with 6.6 (HE/HP and LE/HP) or 4.6% (HE/LP and LE/LP) ruminally undegradable protein (DM basis). Ruminally degradable protein was held constant at 10.1% of DM. All cows were fed HE/HP diet from day 1 to 21 followed by the respective treatments from day 22 to 43 (n=10). Milk protein yield was reduced as dietary energy was reduced. There were no interactions between dietary energy and protein for either milk or protein yield. Milk urea N was significantly affected by energy and protein with an interaction (HE/HP=17.2, HE/LP=12.2, LE/HP=21.0, LE/LP=12.2 mg/dl). Nitrogen efficiency was affected by energy and protein supplies with no interaction and ranged from a low of 31% (LE/HP) to a high of 43% (HE/LP). Although energy and protein independently affected milk and protein yield the tissue and cellular mechanisms that regulate milk production were not studied. The second experiment studied cellular mechanisms in MG that contributed to the regulation of protein synthesis in the presence of energy or protein supply. We hypothesized that metabolism of AA in the MG is controlled by systemic and local tissue adaptations and when combined with altered mammary cell function controlled milk protein yield. Six primiparous mid-lactation Holstein cows with rumen cannulas were randomly assigned to abomasal infusions of casein and starch using a 2 x 2 factorial arrangement. The design was a replicated incomplete 4 x 4 Latin-square. All animals received the same basal diet (17.6% CP and 1.58 Mcal NEL/kg DM) throughout the study. Cows were restricted to 70% of ad libitum intake and infused abomasally for 36 h with water, starch (2 kg/d), casein (0.86 kg/d), or the combination (2 kg/d starch + 0.86 kg/d casein) using peristaltic pumps. Milk weights, milk samples, and arterial and venous blood samples were collected during the last 8 h of infusions. Mammary biopsy samples were collected and tissue protein prepared to evaluate cell signaling. Animals infused with casein had increased arterial concentrations of NEAA and EAA, as well as net uptake and clearance; however, milk protein yield did not increase. Animals infused with starch however, exhibited reduced arterial concentrations of NEAA and EAA but increased clearance and net uptake of most AA. Additionally, infusions of starch increased circulating concentration of insulin, IGF-I, and glucose as well as the rate of mammary plasma flow. Abomasal infusions of starch activated mammary activity of ribosomal protein S6 irrespective of other treatments. However, mammary tissue mTOR increased activity in response to casein only when starch was present during the infusions. These results suggest that cell signaling activation responded to different nutritional stimuli. Milk and protein yield increased in animals infused with starch. Therefore, MG positively responded to energy supply and engaged local and intracellular regulatory mechanisms to achieve that response. Understanding these adaptations could be beneficial in the development of mathematical representations for nutrients utilization in lactating animals. These two studies supported our hypotheses that regulatory mechanism are activated during limiting supply of AA to sustain protein synthesis in MG. The accuracy of mathematical models for lactating animals would increase if effects of energy on AA metabolism and cell signaling related to protein synthesis were included in the representation of milk protein synthesis. / Ph. D.
52

Ovarian and Growth Hormone Regulation of Mammary Growth and Transcript Abundance in Prepubertal Dairy Heifers

Velayudhan, Bisi Thankamani 04 May 2009 (has links)
Ovarian secretions and growth hormone (GH) are major endocrine regulators of mammary growth and development in bovine mammary gland; but information on endocrine regulation during early prepubertal period is limited. Our overall objective was to study the regulation of mammary growth and development as well as transcript abundance in early prepubertal bovine mammary gland by ovarian secretions and exogenous bovine somatotropin (bST). In the first study, we determined the effect of staged ovariectomy on mammary growth and development in two to four month old Holstein heifers. In the second study, effects of bST on mammary growth and development, and also on putative stem cell population were evaluated by beginning bST treatment in one month old Holstein heifers. Mammary growth and development was determined by mass of mammary tissue, biochemical analyses, histological examination, transcript abundance and protein expression in mammary parenchyma (PAR) and fat pad (MFP). Ovariectomy reduced mass and lipid content of PAR without affecting the histological characteristics or rate of epithelial cell proliferation. There was a marked reduction in progesterone receptor expression both at the mRNA and protein level. Ovariectomy also reduced transcript abundance in GH receptor (R), insulin-like growth factor (IGF)-1, IGF binding protein -6, estrogen responsive and proliferation marker genes, but increased the mRNA abundance of IGF-1R in PAR. On the other hand, administration of bST did not have an impact on PAR growth, epithelial proliferation, putative stem cell population or transcript abundance of IGF-axis genes. However, bST reduced the relative abundance of GHR, signal transducers and activators of transcription-5b and suppressors of cytokine signaling-2 in mammary PAR. Transcript abundance of IGF-axis molecules, estrogen responsive genes and proliferation markers in MFP was not affected by ovariectomy or bST. Overall, our data suggest that ovary is a predominant regulator of mammary growth and development in prepubertal heifers and that exogenous bST is not effective as a mammary specific mitogen in very young prepubertal heifers. / Ph. D.
53

Intramammary infection in rapidly growing, non-lactating mammary glands

Enger, Benjamin David 24 August 2018 (has links)
Intramammary infections (IMI) are common in non-lactating heifer and dry cow mammary glands and occur during periods of appreciable mammary growth and development. The presence of these infections is expected to negatively impact mammary growth and development but has yet to be investigated. The works reported here investigated how IMI affects mammary tissue structure, cellularity, and the expression of integral mammogenic hormone receptors implicated in mammary growth. Non-pregnant non-lactating cows (n = 19) were administered estradiol and progesterone to stimulate mammary growth and 2 quarters of each cow were subsequently infused with either saline (n = 19) or Staphylococcus aureus (n = 19). Intramammary infusion of Staphylococcus aureus increased the number of immune cells present in gland secretions and also increased the proportion of neutrophils comprising these secretion somatic cells. Mammary tissues from quarters infused with Staphylococcus aureus contained more immune cells, less mammary epithelial tissue area, and greater tissue areas of intralobular stromal tissue than saline quarters. Staphylococcus aureus quarters also contained more apoptotic mammary epithelial cells and a lower proportion of apoptotic cells in the intralobular stroma compartment than saline infused quarters; this signified that Staphylococcus aureus quarters had less epithelial growth and experienced an expansion and/or lack of regression of stromal tissues. The number of cells expressing estrogen receptor α (ESR1) and progesterone receptor (PGR), as well as staining characteristics of ESR1 and PGR positive nuclei was also examined in these tissues. No appreciable differences were observed in any of the examined ESR1 and PGR measures between Staphylococcus aureus and saline mammary glands, but myoepithelial cells from Staphylococcus aureus glands had a greater nuclear staining area than saline quarters, indicating that these cells were affected by IMI. The results of these investigations indicate that IMI, in mammary glands that are concurrently stimulated to grow and develop, limits the growth of mammary epithelium and impairs regression of the stromal tissue, both of which are necessary for successful lactational performance. / PHD / Successful growth and development of the dairy cow udder (mammary gland) is important and has long-term impacts on milk production. Most mammary growth occurs during the first pregnancy but, at this same time, a bacterial infection can be present within the mammary gland and is expected to hinder normal growth and development. The studies conducted here sought to examine how a bacterial infection, within a cow’s udder, affects mammary gland growth and development. Overall, it was observed that a bacterial infection in the mammary gland reduced the amount of functional tissue that would eventually produce milk while simultaneously increasing the amount of connective tissue. Infected mammary glands also had a greater number of dying mammary cells, reducing the number of cells that would eventually produce milk. Estrogen and progesterone are known to be integral in supporting mammary growth, so an examination of the number of cells being able to receive signals from estrogen and progesterone was also undertaken; presence of an infection did not alter the number of cells able to receive estrogen and progesterone’s signal. This work furthered our understanding of how bacterial infections affect mammary tissue and alter normal developmental processes.
54

Effects of bodyweight and plane of nutrition on mitogenic capacity of mammary extracts in cell culture, mammary growth and development, and protein expression profiles of mammary tissue in Holstein heifers

Daniels, Kristy M. 07 January 2005 (has links)
Mammary gland samples from a large serial-slaughter Holstein heifer nutrition trial were used to determine the effects of stage of development and nutritional management on mitogenic activity of mammary extracts and mammary parenchymal composition. Stage of development and nutritional management of heifers had minimal effects on the mitogenic capacity of mammary extracts, and no significant effects on tissue composition. Two-dimensional proteome maps of heifer mammary extracts were constructed for heifers weighing 200 and 350 kg, respectively at slaughter. Proteins altered by stage of development and/or nutrition were quantified and identified; 820 total protein spots were analyzed. The expression of 131 protein spots differed by dietary treatment only. Stage of development altered the expression of 108 protein spots. Twenty-two protein spots were excised from gels for mass spectrometry analyses. Database searches for proteins with shared primary amino acid sequences were used to identify the proteins. Possible roles of these proteins in mammary development were described. In summary, heifers can be reared on high planes of nutrition without impairing mammary development, but mechanisms governing nutritional and temporal control of mammary development demand further investigation. / Master of Science
55

Transporter gene expression in rat lactating mammary epithelial cells & primary organoid cultures using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR)

Gilchrist, Samuel Edward 30 January 2007
Transporters dynamically expressed at the mammary gland transport critical nutrients into the breast milk of nursing mothers to meet the nutritional demands of the suckling infant. However, xenobiotics may interact with these transporters to potentially alter the nutrient composition of milk and compromise neonatal nutrition. The aim of the present study was to quantitatively evaluate the constitutive expression of various nutrient transporters in whole mammary gland tissue and mammary epithelial organoids (MEO) isolated from female Sprague-Dawley rats at various stages of pregnancy, lactation, and involution. Furthermore, the studys aim was to determine if appropriately cultured mammary epithelial organoids (MEO) maintain in vivo transporter expression to lay down critical groundwork for the development of an in vitro screening tool assessing xenobiotic-nutrient transporter interactions. The following transporters were evaluated using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR): multidrug resistance protein (Mdr) 1a, 1b; multidrug resistance-like protein (Mrp) 1; organic cation transporter (Oct) 1; organic cation/carnitine transporter (Octn) 1, 2, and 3; concentrative nucleoside transporter (Cnt) 1, 2, and 3; equilibrative nucleoside transporter (Ent) 1, 2, and 3; nucleobase transporter (Ncbt) 1 and 2; oligopeptide transporter (Pept) 1 and 2; methotrexate carrier (Mtx) 1; divalent metal transporter (Dmt) 1; and the milk protein ?-casein. Transporter expression patterns in MEO differed from whole tissue for ?-actin, Mdr1a, Mdr1b, Oct1, Octn3, Ent3, Cnt1, Cnt3, Ncbt1, Pept2, Mtx1, and ?-casein. This brings into question whether whole mammary gland tissue is truly appropriate for an understanding of transporter expression in the mammary epithelium. Nevertheless, four general transporter expression patterns emerged in isolated MEO: decline throughout lactation (Mdr1a, Mdr1b, Mrp1 & Dmt1), increase throughout lactation (Cnt1 & Octn3), increase in early lactation (Oct1, Octn2, Ent1, Cnt2, Cnt3, Pept2 & Mtx1) and constant expression throughout lactation (Octn1, Ent2, Ent3, Ncbt1, Ncbt2 & Pept1). These expression patterns will provide insight into the critical windows of nutrient delivery to the breast milk to provide adequate nutritional stimuli to the suckling infant. Furthermore, MEO cultured in an extracellular matrix-rich environment maintained transporter expression at the mRNA level, which underscores the potential of the primary MEO in vitro model system as a screening tool for xenobiotic-transporter interactions at the mammary gland. Transporter expression patterns in MEO were unique for each transporter evaluated. This information accompanied by an in vitro screening tool may allow for predictions of xenobiotic interference with breast milk composition to help safeguard infant health.
56

Transporter gene expression in rat lactating mammary epithelial cells & primary organoid cultures using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR)

Gilchrist, Samuel Edward 30 January 2007 (has links)
Transporters dynamically expressed at the mammary gland transport critical nutrients into the breast milk of nursing mothers to meet the nutritional demands of the suckling infant. However, xenobiotics may interact with these transporters to potentially alter the nutrient composition of milk and compromise neonatal nutrition. The aim of the present study was to quantitatively evaluate the constitutive expression of various nutrient transporters in whole mammary gland tissue and mammary epithelial organoids (MEO) isolated from female Sprague-Dawley rats at various stages of pregnancy, lactation, and involution. Furthermore, the studys aim was to determine if appropriately cultured mammary epithelial organoids (MEO) maintain in vivo transporter expression to lay down critical groundwork for the development of an in vitro screening tool assessing xenobiotic-nutrient transporter interactions. The following transporters were evaluated using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR): multidrug resistance protein (Mdr) 1a, 1b; multidrug resistance-like protein (Mrp) 1; organic cation transporter (Oct) 1; organic cation/carnitine transporter (Octn) 1, 2, and 3; concentrative nucleoside transporter (Cnt) 1, 2, and 3; equilibrative nucleoside transporter (Ent) 1, 2, and 3; nucleobase transporter (Ncbt) 1 and 2; oligopeptide transporter (Pept) 1 and 2; methotrexate carrier (Mtx) 1; divalent metal transporter (Dmt) 1; and the milk protein ?-casein. Transporter expression patterns in MEO differed from whole tissue for ?-actin, Mdr1a, Mdr1b, Oct1, Octn3, Ent3, Cnt1, Cnt3, Ncbt1, Pept2, Mtx1, and ?-casein. This brings into question whether whole mammary gland tissue is truly appropriate for an understanding of transporter expression in the mammary epithelium. Nevertheless, four general transporter expression patterns emerged in isolated MEO: decline throughout lactation (Mdr1a, Mdr1b, Mrp1 & Dmt1), increase throughout lactation (Cnt1 & Octn3), increase in early lactation (Oct1, Octn2, Ent1, Cnt2, Cnt3, Pept2 & Mtx1) and constant expression throughout lactation (Octn1, Ent2, Ent3, Ncbt1, Ncbt2 & Pept1). These expression patterns will provide insight into the critical windows of nutrient delivery to the breast milk to provide adequate nutritional stimuli to the suckling infant. Furthermore, MEO cultured in an extracellular matrix-rich environment maintained transporter expression at the mRNA level, which underscores the potential of the primary MEO in vitro model system as a screening tool for xenobiotic-transporter interactions at the mammary gland. Transporter expression patterns in MEO were unique for each transporter evaluated. This information accompanied by an in vitro screening tool may allow for predictions of xenobiotic interference with breast milk composition to help safeguard infant health.
57

Prepubertal bisphenol A exposure in the rat mammary gland mechanism of action for carcinogenesis /

Raghuraman, Nandini. January 2007 (has links) (PDF)
Thesis (M.S.)--University of Alabama at Birmingham, 2007. / Title from PDF title page (viewed Jan. 28, 2010). Includes bibliographical references (p. 30-31).
58

A study of the inheritance of supernumerary mammae in guinea pigs

Goertzen, Betty Lanning. January 1949 (has links)
Call number: LD2668 .T4 1949 G61 / Master of Science
59

Epidemiological studies of clinical mastitis in British dairy herds with bulk milk somatic cell counts of less than 150,000 cells per millilitre

Peeler, Edmund Joseph January 2001 (has links)
No description available.
60

CD44 and Hyaluronan in the Regulation of Mammary Gland Development and Breast Cancer Progression

vanGils Louderbough, Jeanne Marguerite January 2011 (has links)
Metastasis is the leading cause of death in patients with cancer, and the extracellular matrix is critical to cancer dissemination. The adhesion receptor, CD44, mediates cellular communication with the extracellular matrix by binding to the glycosaminoglycan, hyaluronan (HA). CD44 and HA play critical roles in cancer progression and development. HA is deposited in extracellular and pericellular matrices where it directs intracellular signaling through interactions with cell-surface CD44. CD44-HA interactions, in turn, direct signaling that is relevant to cancer progression. Importantly, these molecules can both promote and inhibit the oncogenic cascade, although the mechanism by which they promote dual and contrasting functions is unknown.Here we show that HA can both activate and suppress EGFR, a critical regulator of oncogenic signaling, in a context-dependent fashion. Using a 3D collagen system in which HA is either polymerized in collagen matrix or provided soluble in the media (sHA) we report that collagen-embedded HA (eHA) inhibits EGFR activation, filopodia formation, and cell spreading on a collagen matrix. Additionally, we show that CD44 is subject to cell-type changes during cancer progression. We have found that CD44 is expressed in the myoepithelium of the developing mammary gland and regulates the normal function of this cell type. The myoepithelial function of CD44 is also relevant to its role in cancer progression as CD44 is expressed in the basal cells of early-stage breast and prostate cancer but undergoes a basal to luminal epithelial switch with increasing tumorigenicity and is strongly expressed by tumor epithelium. These findings demonstrate a novel role for eHA as a protective molecule when encountered in the collagen matrix during cancer progression and highlight the importance of understanding cell-type specific contributions during cancer progression. Taken together, the findings reported in this dissertation point to a mechanism by which CD44 and HA can function in tumor suppression and promotion, depending on cell-type specific expression and modulation of the extracellular matrix.

Page generated in 0.0229 seconds