• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 198
  • 41
  • 40
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 402
  • 258
  • 146
  • 141
  • 102
  • 86
  • 57
  • 53
  • 43
  • 41
  • 40
  • 35
  • 30
  • 30
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Force feedback hydraulic servo for advanced assembly machines.

Jilani, Mian Arshad January 1975 (has links)
Thesis. 1975. M.S.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Includes bibliographical references. / M.S.
202

Modal analysis and control of flexible manipulator arms.

Maizza Neto, Octavio January 1975 (has links)
Thesis. 1975. Ph.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / Bibliography: leaves 216-220. / Ph.D.
203

Quantitative clinical measurement of spasticity.

Chao, Alfred January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. / Microfiche copy available in Archives and Barker. / Bibliography: p.80-81. / M.S.
204

Discrete trajectory planners for robotic arms

Tan Hwee Huat. January 1988 (has links) (PDF)
Typescript (Photocopy) Includes paper co-authored by the author as attachment. Bibliography: leaves 133-140.
205

Evaluation of a pole placement controller for a planar manipulator

Doustmohammadi, Ali 05 June 1991 (has links)
The effectiveness of linear control of a planar manipulator is presented for robot operation markedly exceeding the limits of linearity assumed in the design of the linear controller. Wolovich's frequency domain pole placement algorithm is utilized to derive the linear controller. The control scheme must include state estimation since only link position is measured in the planar manipulator studied. Extensive simulations have been conducted not only to verify the linear control design but also to examine the behavior of the controlled system when inputs greatly exceed those assumed for linear design. The results from these studies indicate the linear model performs exactly as designed. The non-linear realistic simulation reveals that the linear model results are obtained when the inputs do not exceed linearity limits. However, when large inputs are applied, the nature of the system response changes significantly. Regardless of the change in behavior, for the cases considered, there was no instability detected and steady-state values were realized with reasonable settling times which increased in length as the size of the inputs were increased. From the simulation results, it is concluded that the linear controller scheme studied is suitable for use in moving objects from one position to another but would not work well in the rapid drawing of lines and curves. / Graduation date: 1992
206

Robust nonlinear decentralized control of robot manipulators

Jimenez, Ronald, 1964- 04 December 1991 (has links)
A new decentralized nonlinear controller for Robot Manipulators is presented in this thesis. Based on concepts of Lyapunov stability theory and some control ideas proposed in [3]-[7], we obtain continuous nonlinear decentralized control laws which guarantee position and velocity tracking to within an arbitrarily small error. Assumptions based on physical constraints of manipulators are made to guarantee the existence of the controller and asymptotic stability of the closed loop system. Simulations show how well this rather simple control scheme works on two of the links of the Puma 560 Manipulator. The main contribution of this thesis is that it extends the results of a class of complex centralized control algorithms to the decentralized robust control of interconnected nonlinear subsystems like robot manipulators. / Graduation date: 1992
207

Development of a control system for a walking machine leg

Thompson, Eric William 08 May 1992 (has links)
This thesis presents a control system for a walking machine leg. The leg is representative of one of the six legs required for a proposed walking machine based on the geometry of the darkling beetle. Each of the three joints is controlled by a DC servo motor mounted to the base of the leg. The speed of the motors is controlled with pulse width modulation. Feedback of joint positions is accomplished with potentiometers mounted on the actual joints. A five-point path, forming a rectangle in the global coordinate system, is used as a skeleton of the path of movement. Desired times and accelerations from point to point are used to develop the path of movement, which smoothes corners and velocity transitions along the path. To create a model of the dynamics of each joint, a constant motor speed is output and the joint velocity and joint angle are recorded. From several trials at several different motor speeds, relationships between the joint velocity, joint angle, and motor speed can be found. This data is then least squares fit in two dimensions to give two second order functions. The first function uses the desired joint angle to calculate the variance from the mean joint velocity. This variance is then added to the desired joint velocity and is used in the second function to calculate the needed motor signal. Feedback control is accomplished using a PID control system. Because of the high level of noise in the feedback signal, a digital noise filter is used. Both moving average and linear regression techniques are examined. Performance of the system is measured by comparing the actual path in Cartesian coordinates to the desired path of movement. The RMS error is taken along the path, during the time frame of the ideal system. The maximum Cartesian error along the path is also used in evaluation. To determine suitable feedback gain combinations, several experiments are run and evaluated. Data is plotted and suitable values are chosen for the feedback gains based on their performance and sensitivity to change in performance. The performance of the leg is measured for a basic rectangular path, the basic path with a variation in step angle, and the basic path with a constant body velocity. / Graduation date: 1992
208

Nonlinear control of co-operating hydraulic manipulators

Zeng, Hairong 07 December 2007 (has links)
This thesis presents the design, analysis, and numerical and experimental evaluation of nonlinear controllers for co-operation among several hydraulic robots operating in the presence of significant system uncertainties, non-linearities and friction. The designed controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an acceptable internal force on the object. A general description of the kinematic and dynamic relations for a hydraulically actuated multi-manipulator system is presented first. The entire mathematical model incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction dynamics. For the purpose of simulations, a detailed numerical simulation program of such a system is also developed, in which two three-link planar robot manipulators resembling the Magnum hydraulic manipulators manufactured by ISE, interact with each other through manipulating a common object. The regulating control problem is studied next, in which the desired position of the object and the corresponding desired link displacement change step-wise. Initially, a controller is designed based on a backstepping technique, assuming that full knowledge of the dynamics and kinematics of the system is available. The assumption is then relaxed and the control system is analyzed. Based on the analysis, the controller is then modified to account for the uncertainty of the payload, robot dynamic parameters and hydraulic functions. Next, the regulating controller is extended to a tracking controller, which allows the object to follow a given trajectory and is robust against parameter uncertainties. Additionally, an observer is added to the controller to avoid the need of acceleration feedback. To investigate the effect of friction force, the above controllers are examined by introducing the most recent and complete LuGre friction model into the system dynamics. The tracking controller is then redesigned to compensate the effect of friction. Observers are designed to observe the immeasurable friction states. Based on the observed friction states and estimated friction parameters, an appropriate friction compensation scheme is designed which does not directly use velocity in order to avoid the need of acceleration feedback by the controller. Finally, the problem of “explosion of terms” coming from the backstepping method is solved by using the concept of dynamic surface control in which a low pass filter is integrated to avoid model differentiation. Simulations are carried out for analysis of the control system and verification of the developed controllers. Experimental examinations are performed on an available hydraulic system consisting of two single-axis hydraulic actuators. / February 2008
209

A fast trajectory tracking adaptive controller for robot manipulators

Tagami, Shinsuke 11 March 1993 (has links)
An adaptive decentralized nonlinear controller for a robot manipulator is presented in this thesis. Based on the adaptive control schemes designed by Seraji [18], Dai [30], and Jimenez [31], we redesigned and further simplified the control algorithm and, as a consequence, we achieved better path tracking performance. The proposed adaptive controller is made of a PD feedback controller which has time varying gains, a feedforward compensator based on the idea of inverse dynamics, and an auxiliary signal. Due to its adaptive structure, the controller shows robustness against disturbances and unmodeled dynamics. In order to ensure asymptotic tracking we select a Lyapunov function such that the controller forces the negative definiteness of the time derivative of such a Lyapunov function. To do this, the tracking position and velocity error are penalized and used as a part of the adaptive control gain. The main advantages of this scheme are the comparably faster convergence of tracking error, relatively simpler structure, and smoother control activity. This controller only requires the position and angular speed measurement, it does not require any knowledge about the mathematical model of the robot manipulator. Simulation shows the capacity of this controller and its robustness against disturbances. / Graduation date: 1993
210

Posture Dependent Vibration Resistance of Serial Robot Manipulators to Applied Oscillating Loads

Hearne, James 21 December 2009 (has links)
There are several advantages to replacing CNC machinery with robotic machine tools and as such robotic machining is emerging into the manufacturing and metal cutting industry. There remain several disadvantages to using robots over CNC stations primarily due to flexibility in robotic manipulators, which severely reduces accuracy when operating under high machining forces. This flexibility is dependent on configuration and thus the configuration can be optimised through posture selection to minimise deflection. In previous work little has been done to account for operating frequency and the additional complications that can arise from frequency dependent responses of robotic machine tools. A Fanuc S-360 manipulator was used to experimentally investigate the benefits of including frequency compensation in posture selection. The robot dynamics first had to be identified and experimental modal analysis was selected due the inherent dependency on frequency characteristics. Specifically, a circle fit operation identified modal parameters and a least squares optimisation generated dynamic parameters for a spatial model. A rigid-link flexible-joint model was selected and a pseudo-joint was used to create an additional DOF to accommodate link flexibility. Posture optimisation was performed using a gradient-descent algorithm that used several starting points to identify a global minimum. The results showed that a subset of modal data that excluded the mode shape vectors could be used to create a model to predict the manipulator vibration response. It was also found that the receptance variation of the manipulator with configuration was insufficient to verify the optimisation throughout the entire selected workspace; however the model was shown to be useful in regions containing multiple peaks where the modelled dynamics were dominant over the highly volatile measured data. Simulations were performed on a redundant planar manipulator to overcome the lack of receptance variation found in the Fanuc manipulator. These simulations showed that there were two mechanisms driving the optimisation; overall amplitude reduction and frequency specific amplitude reduction. Using a stiffness posture measure for comparison, the results of the frequency specific reduction could be separated and were found to be particularly beneficial when operating close to resonant frequencies.

Page generated in 0.0802 seconds