• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crustal and upper mantle structure beneath the Galapagos arechipelago from seismic tomography

Villagomez Diaz, Darwin R., 1973- 12 1900 (has links)
xv, 151 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / To explain the origin of several distinct aspects of the Galápagos volcanic hotspot, such as the broad geographical extent of recent volcanism and the unusual pattern of geochemical anomalies, we conducted seismic tomography studies of the upper mantle and crust beneath the Galápagos Archipelago. The studies combine measurements of group and phase velocities of surface waves and delay times of body waves. We find that upper mantle seismic velocities are lower than those beneath other regions of comparable age in the Pacific and consistent with an excess temperature of 30 to 150°C and ∼0.5% melt. We attribute the excess temperature and presence of melt to an upwelling thermal mantle plume. Crustal seismic velocity is up to 25% lower than that of very young crust at the East Pacific Rise (EPR) and is comparable to that of Hawaii, which we attribute to heating by increased intrusive activity above the Galápagos plume and the construction of a highly porous volcanic platform. In addition, we find that the Galápagos hotspot is underlain by a high-velocity region whose thickness varies from 40 to 100 km. The tomographic images reveal that the upwelling mantle plume tilts northward (towards the nearby Galápagos Spreading Center) as it rises and then spreads laterally when it reaches the bottom the lid. The lid, which we attribute to residuum from melting, is thickest where it is farthest from the spreading center, suggesting that ridge processes may affect the generation and amount of thinning of the residuum layer. In addition, the thickness of the lid correlates well with the geographical pattern of geochemical anomalies of erupted lavas, suggesting that the lid may control the final depth of decompression melting. We conclude that many of the distinct characteristics of the Galápagos can be attributed to the interaction of the upwelling plume with the lid and the nearby ridge. We further suggest that the ridge affects the geometry of plume upwelling in the upper mantle and also the pattern of lateral spreading of the plume due to its effect on the thickness of the residuum layer. This dissertation includes previously published co-authored material. / Committee in charge: Dr. Douglas R. Toomey, Chairperson; Dr. Eugene Humphreys, Member; Dr. Emilie Hooft Toomey, Member; Dr. Paul Wallace, Member; Dr. John Conery, Outside Member
2

Anizotropní tomografie svrchního pláště pod Evropou / Anisotropic tomography of the European upper mantle

Žlebčíková, Helena January 2019 (has links)
Title: Anisotropic tomography of the European upper mantle Author: Helena Žlebčíková Department: Department of Geophysics, Faculty of Mathematics and Physics, Charles University Training institution: Institute of Geophysics of the Czech Academy of Sciences (IG CAS) Supervisor: RNDr. Jaroslava Plomerová, DrSc., IG CAS Consultants: RNDr. Vladislav Babuška, DrSc., IG CAS RNDr. Luděk Vecsey, Ph.D., IG CAS Abstract: Large-scale seismic anisotropy of the continental mantle lithosphere derived from joint inversion/interpretation of directional variations of P-wave travel-time residuals and SKS-wave splitting calls for orientation of the symmetry axes to be treated generally in 3D. Nevertheless, most of the tomography studies neglect the anisotropy of the body waves completely or they are limited to either azimuthal or radial anisotropy. Therefore, we have developed a code called AniTomo for coupled anisotropic-isotropic travel-time tomography of the upper mantle. The novel code allows inversion of relative travel-time residuals of teleseismic P waves simultaneously for 3D distribution of P-wave isotropic- velocity perturbations and anisotropy of the upper mantle. We assume weak anisotropy of hexagonal symmetry with either the 'high-velocity' a axis or the 'low-velocity' b axis. The symmetry axis is allowed to be...

Page generated in 0.0554 seconds