• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Iron Oxidation Kinetics in Mantua Reservoir

Lathen, Scott H. 08 May 2007 (has links) (PDF)
Irrigation of the municipal cemetery in Brigham City, Utah resulted in stained headstones in 2001 and 2002. The water used in the irrigation came from Mantua reservoir, a medium sized impoundment situated near the mouth of Box Elder Canyon. In order for Brigham City to establish a city wide secondary pressurized irrigation system using water from Mantua reservoir, the cause and the source of staining problem must be determined. Previous research (Wallace 2006) determined that the source of the staining was the reduction of iron found in Mantua Reservoir sediments that occurred when seasonal variations in the reservoir caused anaerobic conditions. The reduced iron then dissolved in the water and was used in the irrigation system, causing re-oxidation of the iron. The oxidized iron then precipitated out on the headstones causing the staining. The purpose of this investigation is to determine the iron oxidation kinetics after the re-aeration of the water which will help determine appropriate mitigation methods. A secondary purpose is to confirm the Mantua reservoir's capacity to become anaerobic, resulting in the conditions which cause staining. Using laboratory investigations and computer modeling, I determined that on re-aeration, fifty percent of the dissolved iron in the water precipitates in five hours. Using first-order kinetics to model this process, I found the rate constant of the kinetic reaction to be 0.0029 min-1. Fitting a geochemical computer model of the iron oxidation kinetics in Mantua reservoir, which uses a higher-order kinetics model to better model this process, to experimental kinetic data yielded a rate constant of 4x1013 /atm x min. I also recreated the staining process in the laboratory using concrete. This was successful and provided visual evidence that the iron precipitates out of the water and stained the concrete within a couple of hours of application. Field data collected from Mantua reservoir showed that the dissolved oxygen concentration in the reservoir drops regularly below levels consistent with equilibrium to the atmosphere. While my field measurements did not record anaerobic conditions, based on the patterns shown, this study shows that it would be possible for anaerobic conditions to occur during warmer weather.
2

Mechanisms Causing Ferric Staining in the Secondary Water System of Brigham City, Utah

Wallace, Robert Derring 26 May 2007 (has links)
Water from Mantua reservoir has, during some years, exhibited reddish-brown staining when used by Brigham City for irrigation. I propose that seasonal fluctuations in the reservoir chemistry create an environment conducive to dissolving iron from the iron-rich sediments, which subsequently precipitate during irrigation, resulting in a staining event. These conditions are produced by chemical and biological decomposition of organic matter, coupled with isolation of the hypolimnetic waters, which results in seasonal low concentrations of dissolved oxygen in these waters. Under these specific circumstances, anaerobic conditions develop creating a geochemical environment that causes iron and manganese reduction from Fe(III) to Fe(II) and Mn(IV) to Mn(II), respectively. These reducing conditions facilitate reduction-oxidation (redox) chemical reactions that convert insoluble forms of iron and manganese found in the reservoir sediments into more soluble forms. Consequently, relatively high amounts of dissolved iron and manganese are generated in the bottom waters immediately adjacent to the benthic sediments of the reservoir. Water withdrawn from a bottom intake pipe during these periods introduces iron-rich water into the distribution system. When this water is exposed to oxygen, reoxidation shifts redox equilibrium causing precipitation of soluble Fe(II) and Mn(III) back to highly insoluble Fe(III) and Mn(IV). The precipitant appears on contact surfaces as the aforementioned ferric stain. This research focuses specifically on the iron chemistry involved and evaluates this hypothesis using various measurements and models including field data collection, computer simulations, and bench-scale testing to validate the processes proposed.

Page generated in 0.0487 seconds