• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lakes are browner in the south than in the north of Sweden despite similar levels of dissolved iron

Lindgren, Fredrik January 2019 (has links)
During recent decades many lakes have become browner in the northern hemisphere and more specific in Sweden. This process is called brownification. Brownification of lakes makes it more difficult to clean water to drinking water and may have negative ecological effects on biota. Browning of lakes is generally thought to be caused by an increase of humic substances that consist of organic matter which colour the water brown or yellow. However, more recent studies show that dissolved iron can interact with humic substances in browning lakes. Since the concentrations of dissolved iron have increased during recent years and the mechanisms behind brownification and the contribution of iron to this process is not clearly understood it is important to investigate this subject. In this study 17 lakes in south of Sweden were sampled for iron concentration, dissolved organic carbon (DOC), absorbance (420nm) and pH. Further, data was added about atmospheric sulphur deposition and additional data from 17 lakes in the north part of Sweden. Iron had a stronger significant correlation towards absorbance than DOC had in the south of Sweden. A similar amount of dissolved iron seems to colour lakes differently based on their location in Sweden. This indicates that different mechanisms are involved in the interaction between iron and absorbance. However, pH had a stronger relationship with absorbance than either DOC or iron. Overall results suggested that iron do have a strong browning effect on Swedish fresh water lakes in the presence of DOC and that iron-increase driven processes may be due to a change of pH.
2

The seasonal cycling and physico-chemical speciation of iron on the Celtic and Hebridean shelf seas

Birchill, Antony James January 2017 (has links)
Shelf seas represent an important source of iron (Fe) to the open ocean. Additionally, shelf seas are highly productive environments which contribute to atmospheric carbon dioxide drawdown and support large fisheries. The work presented in this thesis describes the seasonal cycle of Fe in the Celtic and Hebridean Shelf Seas, and determines the physico-chemical speciation of Fe supplied from oxic margins. The results from repeated field surveys of the central Celtic Sea showed a nutrient type seasonal cycling of dissolved Fe (< 0.2 µm; dFe), which is surprising in a particle rich shelf system, suggesting a balance of scavenging and remineralisation processes. Coincident drawdown of dFe and nitrate (NO3-) was observed during the phytoplankton spring bloom. During the bloom, preferential drawdown of soluble Fe (< 0.02 µm; sFe) over colloidal Fe (0.02-0.2 µm; cFe) indicated greater bioavailability of the soluble fraction. Throughout summer stratification, it is known that NO3- is drawn down to < 0.02 µM in surface waters. This study revealed that both dFe and labile particulate Fe (LpFe) were also seasonally drawn down to < 0.2 nM. Consequently, it is hypothesised that the availability of Fe seasonally co-limits primary production in this region. At depth both dFe and NO3- concentrations increased from spring to autumn, indicating that remineralisation is an important process governing the seasonal cycling of dFe in the central Celtic Sea. In spring, summer and autumn, distinctive intermediate nepheloid layers (INL) were observed emanating from the Celtic Sea shelf slope. The INLs were associated with elevated concentrations of dFe (up to 3.25 ± 0.16 nM) and particulate Fe (up to 315 ± 1.8 nM) indicating that they are a persistent conduit for the supply of Fe to the open ocean. Typically > 15% of particulate Fe was labile and 60-90% of dFe was in the colloidal fraction. Despite being < 50 km from the 200 m isobath, the concentration of dFe was < 0.1 nM in surface waters at several stations. Broadly, the concentration of nutrients in surface waters described an oligotrophic environment where co-limitation between multiple nutrients, including Fe, appears likely. Over the Hebridean shelf break, residual surface NO3- concentrations (5.27 ± 0.79 µM) and very low concentrations of dFe (0.09 ± 0.04 nM) were observed during autumn, implying seasonal Fe limitation. The dFe:NO3- ratio observed is attributed to sub-optimal vertical supply of Fe relative to NO3- from sub-surface waters. In contrast to the shelf break, surface water in coastal regions contained elevated dFe concentrations (1.73 ± 1.16 nM) alongside low NO3-. Seasonal Fe limitation is known to occur in the Irminger and Iceland Basins; therefore, the Hebridean shelf break likely represents the eastern extent of sub-Arctic Atlantic seasonal Fe limitation, thus indicating that the associated weakening of the biological carbon pump exists over a wider region of the sub-Arctic Atlantic than previously recognised. These key findings demonstrate that the availability of Fe to phytoplankton may seasonally reach limiting levels in temperate shelf waters and that oxic margins persistently supply Fe dominated by colloidal and particulate fractions to the ocean.
3

Mechanisms Causing Ferric Staining in the Secondary Water System of Brigham City, Utah

Wallace, Robert Derring 26 May 2007 (has links)
Water from Mantua reservoir has, during some years, exhibited reddish-brown staining when used by Brigham City for irrigation. I propose that seasonal fluctuations in the reservoir chemistry create an environment conducive to dissolving iron from the iron-rich sediments, which subsequently precipitate during irrigation, resulting in a staining event. These conditions are produced by chemical and biological decomposition of organic matter, coupled with isolation of the hypolimnetic waters, which results in seasonal low concentrations of dissolved oxygen in these waters. Under these specific circumstances, anaerobic conditions develop creating a geochemical environment that causes iron and manganese reduction from Fe(III) to Fe(II) and Mn(IV) to Mn(II), respectively. These reducing conditions facilitate reduction-oxidation (redox) chemical reactions that convert insoluble forms of iron and manganese found in the reservoir sediments into more soluble forms. Consequently, relatively high amounts of dissolved iron and manganese are generated in the bottom waters immediately adjacent to the benthic sediments of the reservoir. Water withdrawn from a bottom intake pipe during these periods introduces iron-rich water into the distribution system. When this water is exposed to oxygen, reoxidation shifts redox equilibrium causing precipitation of soluble Fe(II) and Mn(III) back to highly insoluble Fe(III) and Mn(IV). The precipitant appears on contact surfaces as the aforementioned ferric stain. This research focuses specifically on the iron chemistry involved and evaluates this hypothesis using various measurements and models including field data collection, computer simulations, and bench-scale testing to validate the processes proposed.

Page generated in 0.0477 seconds