Spelling suggestions: "subject:"arevalued agogics"" "subject:"arevalued biogics""
1 |
Systematic and local search algorithms for regular-SATBéjar Torres, Ramón 21 December 2000 (has links)
No description available.
|
2 |
Suggestions for Deontic LogiciansJohnson, Cory 23 January 2013 (has links)
The purpose of this paper is to make a suggestion to deontic logic: Respect Hume\'s Law, the answer to the is-ought problem that says that all ought-talk is completely cut off from is-talk. Most deontic logicians have sought another solution: Namely, the solution that says that we can bridge the is-ought gap. Thus, a century\'s worth of research into these normative systems of logic has lead to many attempts at doing just that. At the same time, the field of deontic logic has come to be plagued with paradox. My argument essentially depends upon there being a substantive relation between this betrayal of Hume and the plethora of paradoxes that have appeared in two-adic (binary normative operator), one-adic (unary normative operator), and zero-adic (constant normative operator) deontic systems, expressed in the traditions of von Wright, Kripke, and Anderson, respectively. My suggestion has two motivations: First, to rid the philosophical literature of its puzzles and second, to give Hume\'s Law a proper formalization. Exploring the issues related to this project also points to the idea that maybe we should re-engineer (e.g., further generalize) our classical calculus, which might involve the adoption of many-valued logics somewhere down the line. / Master of Arts
|
3 |
Algebraic approach to modal extensions of Łukasiewicz logics / Approche algébrique d'extensions modales des logiques de ŁukasiewiczTeheux, Bruno 16 February 2009 (has links)
This dissertation is focused on an algebraic approach of some many-valued generalizations of modal logics. The starting point is the definition of the [0,1]-valued and the Ł_n-valued Kripke models, where [0,1] denotes the well known MV-algebra and Ł_n its finite subalgebra {0, 1/n, ... , (n-1)/n,1} for any positive integer n.
Two types of structures are used to define validity of formulas: the class of L-frames and the class of Ł_n-valued L-frames. The latter structures are L-frames in which we specify in each world u the set Ł_m (where m is a divisor of n) of the possible truth values of the formulas in u.
These two classes of structures define two distinct notions of validity. We use these notions to study the problem of definability of classes of structures with modal formulas. We obtain for these two classes an equivalent of the Goldblatt-Thomason theorem.
We are able to consider completeness problems with respect to these relational semantics thanks to the connections between relational and algebraic semantics. Our strongest results are about Ł_n-valued logics. We are indeed able to apply and develop algebraic tools (namely, canonical and strong canonical extensions) that allow to generate complete Ł_n-valued logics.
/
Nous consacrons cette dissertation à une étude algébrique de certaines généralisations multivaluées des logiques modales. Notre point de départ est la définition des modèle de Kripke [0,1]-valués et Ł_n-valués, où [0,1] désigne la MV-algèbre bien connue et Ł_n sa sous-algèbre {0, 1/n, ... , (n-1)/n,1} pour tout naturel non nul n.
Nous utilisons deux types de structures pour définir une relation de validité: la classe des L-structures et celles des L-structures Ł_n-valuées. Ces dernières sont des L-structures dans lesquelles nous précisons pour chaque monde u l'ensemble Ł_m (où m est un diviseur de n) des valeurs de vérité que les formules sont autorisées à prendre en u.
Ces deux classes de structures définissent deux notions distinctes de validité. Nous les utilisons pour étudier le problème de la définissabilité des classes de structures à l'aide du langage modal. Nous obtenons dans les deux cas l'équivalent du théorème de Goldblatt-Thomason.
Nous considérons aussi les problèmes de complétude vis-à-vis de ces sémantiques relationnelles à l'aide des liens qui les lient à la sémantique algébrique. Les résultats les plus forts que nous obtenons concernent les logiques modales Ł_n-valuées. En effet, dans ce cas, nous pouvons appliquer et développer des outils algébriques (à savoir, les extensions canoniques et les extensions canoniques fortes) qui permettent de générer des logiques complètes.
|
Page generated in 0.0441 seconds