• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 29
  • 29
  • 16
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An investigation into the velocity-dependence of the coefficient of friction between concrete and maraging steel

Duncan, Trace A 09 August 2022 (has links)
This work investigates the velocity-dependent coefficient of friction between concrete and 300 Maraging steel over short displacements. A modified torsional Hopkinson bar is utilized for rotating thin-walled steel rings in contact with a concrete disk under static precompression. Rotational velocity is varied between tests to determine the velocity dependence of the friction coefficient. Normal force is varied between certain tests to determine the pressure dependence of the friction coefficient between the concrete and steel. Three different types of concrete are tested to deduce any composition effect on the friction coefficient. Dry and greased conditions’ impact on the friction coefficient are also evaluated. Lastly, the displacement dependence (fade) is considered for the concrete with regards to the steel. Discussion of the usefulness of this data in modeling and experimentation of impact between concrete and steel is disclosed.
22

Estudo das propriedades mecânicas em união de aços dissimilares soldadas pelo processo a plasma e a laser / Study of the mechanical properties in joints of dissimilar steels welded by the plasma and laser process

Silva, Deivid Ferreira da [UNESP] 27 July 2018 (has links)
Submitted by Deivid Ferreira Da Silva (deividferreira@yahoo.com.br) on 2018-10-03T04:44:50Z No. of bitstreams: 1 Doutorado Deivid Ferreira da Silva.pdf: 10141229 bytes, checksum: 7567992adf30e9e3b21fc1984e079772 (MD5) / Approved for entry into archive by Pamella Benevides Gonçalves null (pamella@feg.unesp.br) on 2018-10-05T12:48:01Z (GMT) No. of bitstreams: 1 silva_df_dr_guara.pdf: 10141229 bytes, checksum: 7567992adf30e9e3b21fc1984e079772 (MD5) / Made available in DSpace on 2018-10-05T12:48:01Z (GMT). No. of bitstreams: 1 silva_df_dr_guara.pdf: 10141229 bytes, checksum: 7567992adf30e9e3b21fc1984e079772 (MD5) Previous issue date: 2018-07-27 / O objetivo deste trabalho é avaliar e comparar a resistência mecânica da união de aços dissimilares, o aço Maraging 300 com o aço 300M-ESR pelos processos de soldagens autógenas a Plasma (Plasma Arc Welding – PAW) e a Laser (Laser Beam Welding – LBW). As juntas foram submetidas à avaliação da resistência mecânica através de ensaios de tração e de dureza Vickers (HV) no cordão de solda e zona termicamente afetada. Foram também realizadas análises químicas e metalográficas das juntas soldadas, correlacionando a microestrutura com as propriedades observadas. Em ambos os processos foram aplicados tratamentos térmicos antes e após as soldagens, com o objetivo de endurecer os materiais e procurando aproximar a dureza de ambos os aços e da zona fundida (ZF) e zona termicamente afetada pelo calor (ZTA). Foram realizados vários testes com tempos e temperaturas para se definir quais eram os melhores tratamentos térmicos adotados para a equalização das propriedades mecânicas. Os tratamentos térmicos aplicados após a solda mostraram-se convenientes para o nivelamento dos valores das durezas, somente exibindo poucas perdas nas ZTAs dos aços Maraging. Com a aplicação destes tratamentos também foi possível notar uma equalização nas resistências à tração, em torno de 1300 MPa e aumentos consideráveis das mesmas, comparado com a mesma condição sem tratamento. As soldas mostraram-se eficientes para a união das chapas, porém, em algumas situações da soldagem a Laser, apresentou pequenas falhas, presença de poros, nos cordões das soldas, com isso contribuindo para a diminuição do limite da resistência à tração. / The objective of this work is to evaluate and compare the mechanical strength of welded joints made of the dissimilar steels such as Maraging 300 steel with 300M-ESR steel by the autogenous Plasma Arc Welding (PAW) and Laser welding process (LBW). The joints were submitted to the mechanical strength evaluation by tensile test and hardness Vickers (HV) at the weld bead and thermally affected zone. Chemical analysis and metallographic analysis of the welded joints were also performed, correlating the microstructure observed with the properties. In both processes, heat treatments were applied before and after welding, with the objective of at harden the materials and seeking to approximate the hardness of both steels and the fusion zone and heat affected zone. Several tests were carried using different times and temperatures to determine which ones were the best heat treatments to be adopted aiming the equalization of mechanical properties. The heat treatments applied after welding proved to be convenient for the leveling of the hardness values, only showing few losses in the HAZs of the Maraging steels. Applying of these treatments, it was also possible to note the equalization of tensile strengths, around 1300 MPa and considerable increases of the same, compared to the same condition without treatment. The welds showed to be efficient for the joining of the plates, however, in some situations the Laser welding presented small flaws, such as presence of pores, in the weld beads, causing to the reduction of the tensile strength limit.
23

Caracterização de juntas soldadas em PAW e GTAW de chapas finas em aço maraging 300 submetidas a vários reparos / Characterization of welded joints by PAW and GTAW Maraging 300 steel sheets submitted to several repairs

Sakai, Paulo Roberto [UNESP] 18 December 2015 (has links)
Submitted by PAULO ROBERTO SAKAI null (prsakai@yahoo.com.br) on 2016-01-15T12:06:37Z No. of bitstreams: 1 CARACTERIZAÇÃO DE JUNTAS SOLDADAS EM PAW E GTAW DE CHAPAS FINAS EM AÇO MARAGING 300 SUBMETIDAS A VÁRIOS REPAROS.pdf: 16627185 bytes, checksum: 4b08baddd60bec8be8acf6956cc8e2ee (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-01-15T12:54:59Z (GMT) No. of bitstreams: 1 sakai_pr_dr_guara_int.pdf: 16627185 bytes, checksum: 4b08baddd60bec8be8acf6956cc8e2ee (MD5) / Made available in DSpace on 2016-01-15T12:54:59Z (GMT). No. of bitstreams: 1 sakai_pr_dr_guara_int.pdf: 16627185 bytes, checksum: 4b08baddd60bec8be8acf6956cc8e2ee (MD5) Previous issue date: 2015-12-18 / Este trabalho tem como objetivo caracterizar mecanica e metalograficamente, juntas soldadas de chapas finas em aço Maraging 300, submetidas a até três reparos, usadas na fabricação de envelopes motores foguete a propelente sólido desenvolvidos no Instituto de Aeronáutica e Espaço (IAE) em atendimento às necessidades de sua gama de lançadores. O envelope motor atua como elemento estrutural e também possui a função primária de suportar a pressão de trabalho durante a queima do propelente. Atualmente, o envelope motor é fabricado em aço 300M-ESR e o IAE tomou a decisão de substituí-lo pelo aço Maraging 300. Em função dos processos existentes no Instituto, neste trabalho utilizaram-se os processos de soldagem Plasma Arc Welding - PAW com a técnica keyhole e Gas Tungsten Arc Welding - GTAW, ambos em passe único, com metal de adição. Antes de serem submetidas aos ensaios, as juntas passaram por inspeção não destrutiva de acordo com os critérios da norma AWS D17.1. Os reparos foram feitos de forma manual e processo GTAW. Amostras da junta soldada e reparadas foram submetidas a ensaios de tração, dureza Vickers (HV) por microindentações, análises químicas, análises metalográficas e fractográficas. Corpos de prova dos cordões adjacentes aos reparos também foram avaliados. Os resultados mostram que após a solda e reparos e o tratamento térmico de solubilização e envelhecimento, a zona fundida e a região da linha de fusão da solda apresentam uma dureza abaixo das outras regiões afetadas termicamente. Para as condições da solda sem reparo e reparadas, o processo PAW apresentou um valor menor de dureza em todas estas regiões com relação ao processo GTAW. As análises da superfície dos corpos de prova soldados rompidos indicam o predomínio de um processo de ruptura iniciado próximo à linha de fusão da solda e que se propaga em direção ao interior do cordão. A natureza da fratura mostrou o domínio da formação de alvéolos (dimples). Os corpos de prova soldados GTAW apresentaram uma resistência mecânica mais alta do que os do processo PAW. Igualmente, os corpos de prova soldados PAW obtidos dos cordões das regiões adjacentes aos reparos tiveram valores de resistência inferiores. Embora os valores de resistência mecânica das juntas soldadas submetidas a até três reparos no mesmo ponto tenham apresentado grande variabilidade, não há indicativo de diminuição da resistência com relação a junta sem reparo. / This work aims at mechanic and metallographic characterization of Maraging 300 welded joints sheets, submitted to up to three repairs, used for the fabrication of solid propellant rocket motors at the Institute of Aeronautics and Space – IAE as to comply with its range of launchers. The rocket motor is a structural part and also has the primary function of supporting the nominal pressure during the propellant burning. At present, the rocket motor is fabricated in 300M-ESR steel and IAE has decided to replace such a steel for the Maraging 300 one. Due to IAE’s existing processes, Plasma Arc Welding – PAW with the keyhole technique and the Gas Tungsten Arc Welding – GTAW have been used, both single-pass welding with filler. Before they have been submitted to the tests, the joints went through non-destructive inspection according to AWS D17.1 Standard. Manual repairs and GTAW process have been made. Samples of the welded and repaired joints were submitted to tensile testing, Vickers hardness, chemical analysis, fractrographic and metallographic analysis. Body tests of the beads adjacent to the repairs have also been assessed. Results show that after welding, repairs and solubilization and aging heating treatment, the melted zone as well as the weld joins lines zone present hardness below other heat affected zones. As for the conditions of the non-repaired and repaired welds, the PAW process has demonstrated lower hardness values in all zones in what regards the GTAW process. The welded and fractured body tests surfaces analysis indicate the predominance of a fracture process started next to the weld joins lines which goes towards the bead interior. The nature of the fracture has shown the predominance of dimples. The GTAW welded body tests presented higher mechanical strength than that of the PAW process. Similarly, the PAW welded body tests obtained from the beads of the zones adjacent to repairs presented lower strength values. Although the mechanical strength values of the welded joints submitted to up to three repairs in the same point have shown great variability, there is no indication of strength decrease regarding the non-repaired joint.
24

Mechanical and Corrosion Properties of Selective Laser Melted Alloys

Suryawanshi, Jyoti Balaji January 2017 (has links) (PDF)
Selective laser melting (SLM) of metallic powders is an additive manufacturing technique that is widely employed to produce 3D components, and is fast becoming an important method for manufacturing near-net shape and complex metallic parts. In this thesis, a comprehensive investigation on the effect of SLM on the mechanical and corrosion properties of the Al-12Si (AS), 316L stainless steel (SS), and 18(Ni)-300 grade managing steel (MS) is investigated, with particular emphasis on the developing (micro- as well as mesa-)structure -property correlations. Detailed microstructural characterization combined with quasi-static tensile, fracture toughness, fatigue crack growth, and unmatched fatigue tests were conducted. The effect of post-SLM heat treatment as well as the scanning strategy (linear vs. checker board hatch style) was examined and the results are compared with those of conventionally manufactured (CM) counterparts. The SLM alloys exhibit a mesostructured, in addition to the fine cellular structure along the boundaries. In a case of SLM-AS, the fine cellular structure imparts higher strength at the cost of ductility, while the mesostructured, which arises due to the laser track hatching, causes the crack path to be tortuous, and in turn leads to substantial increase in fracture toughness. This imparts significant anisotropy to the toughness while tensile properties are nearly-isotropic. The experimental results of SLM-SS also show that higher tensile strengths properties with a marked reduction ductility. In spite of these, the fracture toughness, which ranges between 63 and 87 MPa.m0.5, of the SLM-SS is good, which is a result of the mesostructured induced crack tortuousity.Both tensile and toughness properties of SLM-SS were found to be anisotropic in nature. Upon aging SLM-MS, nanoscale precipitation of intermetallic compounds occurs within the cells that, in turn, lead in marked improvements in tensile strengths properties, but substantial reductions in ductility and fracture toughness. Overall, the mechanical performance, except ductility, of the SLM-MS after aging is found to be similar to that of CM-MS. Importantly, the lack of ductility does not lead to a reduction in toughness. Although the SLM-MS alloy possesses a mesostructured, no significant anisotropy in the mechanical behaviour is observed. The unnoticed studies on SLM-AS, -SS, and -MS reveal that the tensile residual stresses, gas-pores, and unmelted powder particles, can degrade the unmatched highest fatigue properties considerably and hence need be eliminated for high fatigue strength. Room temperature, electrochemical corrosion resistances (CRs) of SLM-AS, -SS and -MS in 0.1M NaCl solution were also evaluated and compared with those CM counterparts. While SLM improves CRs of AS and SS, it degrades that of MS. The results are discussed in terms of microstructural refinement and porosity that are common in SLM alloys.
25

Mechanické vlastnosti materiálů připravovaných pomocí procesu SLM / Mechanical properties of materials prepared by SLM process

Doubrava, Marek January 2019 (has links)
The diploma thesis deals with the selection of process parameters used for manufacturing of high-strenth materials using SLM technology. The feedstock material was powder with a chemical composition according to standard DIN X3NiCoMoTi 18-9-5. Influence of change in process parameters on mechanical properties was examined by hardness tests and tensile tests. Metallographic and fractographic analysis were conducted with an aim to understand mechanisms of failure present in this type of material. Selection of optimal process parameters was based on the analysis of mechanical properties of manufactured samples. Possible future steps related to the improvement of the process were proposed. Results of this experiment were compared with literature regarding parts produced by SLM technology and conventional methods.
26

Konstrukce segmentu formy pro lisování pneumatik vyráběného technologií Selective Laser Melting / Design of mold segment for molding tires manufactured using Selective Laser Melting

Kvaššay, Adrián January 2018 (has links)
This diploma thesis deals with development and design modifications of tire mould segment which will be batch produced by additive technology Selective Laser Melting. Material for its production is maraging steel 1.2709. Lattice structure was used inside the segment construction. The geometry of the lattice cell was chose based on two main factors – eliminating production costs and providing sufficient stiffness. Strength of the segment was calculated by FEM. The functional sample was made and its distortion was analyzed by optical digitalization.
27

Tribological characterisation of additively manufactured hot forming steels

Vikhareva, Anna January 2020 (has links)
Over the last decade, the application of ultra-high strength steel as safety components and structural reinforcements in automobile applications has increased due to their favourable high-strength-to-weight ratio. The complex shaped components are widely produced using hot stamping. However, this process encounters problems such as galling and increased wear of the tools due to harsh operating conditions associated to the elevated temperatures. Moreover, quenching is a critical step that affects the hot formed components. Slow cooling rates results in inhomogeneous mechanical properties and increased cycle time. Therefore, fast and homogeneous quenching of the formed components in combination with reduction of wear rates during hot forming are important targets to ensure the quality and efficiency of the process. The use of additive manufacturing (AM) technologies opens up potential solutions for novel tooling concepts. The manufacturing of complex shape cooling channels and integration of high-performance alloys at the surface could benefit the tribological performance in the forming operation. However, the research into high temperature tribological behaviour of AM materials in hot forming applications is very limited. The aim of this work is to study the tribological performance of additively manufactured materials. Two steels were used – a maraging steel and modified H13 tool steel. The hot work tool steel H13 is commonly applied for dies in metal forming processes. In this thesis it was used to study additive manufacturing as the processing route instead of conventional casting. The choice of a maraging steel is motivated by a possible application of high-performance alloys as a top layer on dies. The materials were post-machined and studied in milled, ground and shot-blasted conditions. The different post-machining operations were applied to study the effect of surface finish on the tribological behaviour and also to evaluate different methods of post-machining an AM surface. As fabricated dies are usually manufactured with milled surface. During its use, the dies undergo refurbishment after certain number of cycles and the surface condition is changed to a ground surface. These surface finishes are commonly tested for hot forming applications. The shot blasted operation was chosen as alternative surface finish. The process allows to prepare large sized tools easily and the surface has beneficial compressive stresses. The tribological behaviour of AM steels was studied using a hot strip drawing tribometer during sliding against a conventional Al-Si coated 22MnB5 steel. The workpiece temperature during the tests was 600 and 700°C. The results of the tribological performance of AM materials were compared to conventionally cast tool steel QRO90.The results have shown that the friction behaviour of both maraging and H13 steels at 600°C was stable and similar whereas at 700°C the COF was more unstable and resulted in an earlier failure of the tests due to increased material transfer of Al-Si coating from the workpiece surface.The main wear mechanisms for AM materials were galling and abrasion at both temperatures. Abrasion is more severe for the AM steels in comparison to cast tool steel QRO90. The galling formation on milled and ground surfaces showed similar behaviour to cast steel and it increased with higher workpiece temperatures. The shot-blasted surfaces showed less build-up of transferred material on the surface but folding of asperities and entrapment of Al-Si particles within surface defects generated during shot-blasting.
28

Analýza přesnosti výroby lamel formy pneumatiky vyráběných SLM technologií / Analysis of SLM production accuracy of sipes for tire molds

Tomeš, Jan January 2016 (has links)
The first part of the diploma thesis is focused on the analysis and evaluation of the current production of sipes by two SLM devices PXL and M2 Cusing, produced by Phenix Systems and Concept Laser companies. The samples of both machines went through the same manufacturing process and the same process of measurement and evaluation, in order to carry out comparison between individual machines. Geometric accuracy, surface roughness, mechanical properties, and material structure of the samples have been compared. For the sipes it was necessary to create a digital evaluation methodology of geometry. In the second part of the thesis, process parameters are selected on the basis of research and further their influence on surface roughness of manufactured sipes is analyzed.
29

Mechanical characterization of functionally graded M300 maraging steel cellular structures

Sampson, Bradley Jay 08 December 2023 (has links) (PDF)
Traditional methods for increasing the energy absorption of a structure involve using a stronger material or increasing the volume of the structure, resulting in a higher cost or additional weight. Additive manufacturing (AM) can be used to maximize the energy absorption of materials with the ability to create complex geometries such as cellular structures. Previous work has shown that the energy absorption of additively manufactured parts can be improved through functionally graded cellular structures; however, this strategy has not been applied to ultra-high strength steel materials. This work characterizes the effect of multiple functional-grading strategies (e.g. uniform, rod-graded, size-graded) on the energy absorption to weight ratio of laser powder bed fusion (L-PBF) produced M300 maraging steel lattice structures. Each structure is designed with the same average relative density to analyze the structures on an equal mass basis, to evaluate manufacturability, mechanical response, and compare experimental results with numerical simulation.

Page generated in 0.0817 seconds