Spelling suggestions: "subject:"marangonikonvektion"" "subject:"marangonikonvektionen""
1 |
Dynamics of hydrogen gas bubbles at Pt microelectrodesBashkatov, Aleksandr 28 August 2023 (has links)
This dissertation aims to better understand the evolution of single hydrogen gas bubbles evolved during the water electrolysis at microelectrodes. In particular, the growth and detachment processes were studied in detail experimentally by means of electrochemical and optical methods in terrestrial, micro-, and hypergravity conditions. The combination of microelectrode and sulfuric acid promoting the bubble coalescence results in a periodical growth and the detachment of single bubbles. This provides a systematic view on the phenomena under study. A shadowgraphy system was used to provide general insight into the bubble behaviour, while Particle Tracking Velocimetry (PTV) was used for the flow velocity measurements around the growing hydrogen bubble. By applying high electric potentials considerably exceeding that in industrial electrolysers, it is possible to analyse the evolution of hydrogen bubbles under extreme conditions and for a wide range of electrolyte concentrations, overall shedding more light on bubble dynamics in general, and especially the underlying balance of forces.
The growth of single hydrogen bubbles at micro-electrodes was studied in an acidic electrolyte over a wide range of concentrations and cathodic potentials. New bubble growth regimes were identified which differ in terms of whether the bubble evolution proceeds in the presence of a monotonic or oscillatory variation in the electric current and a carpet of microbubbles underneath the bubble. Key features such as the growth law of the bubble radius, the dynamics of the microbubble carpet, the onset time of the oscillations and the oscillation frequencies were characterised as a function of the concentration and electric potential. Furthermore, the system's response to jumps in the cathodic potential was studied. The electrode, tilted to the horizon, promotes faster growth and, therefore, earlier detachment at the smaller volume of the bubble. During its evolution, the bubble moves laterally from the electrode centre, releasing the electrode area and enabling higher electric current, therefore faster hydrogen generation and bubble-bubble coalescence rates. The duration of the bubble position oscillations found on the horizontal electrode gradually reduces upon tilt angle increase, with an almost complete disappearance at 5°. Based on the analysis of the forces involved and their scaling with the concentration, potential and electric current, a sound hypothesis was formulated regarding the mechanisms underlying the micro-bubble carpet and oscillations.
A detailed look was also taken on the dynamics of single hydrogen bubbles in microgravity during parabolic flights. Three bubble evolution scenarios were identified depending on the electric potential applied and the acid concentration. The dominant scenario, characterised by lateral detachment of the grown bubble, was studied in detail. For that purpose, the evolution of the bubble radius, electric current and bubble trajectories as well as the bubble lifetime were comprehensively addressed for different potentials and electrolyte concentrations. The bubble-bubble coalescence events, which are responsible for reversals of the direction of bubble motion, were particularly analysed. Finally, as parabolic flights also permit hypergravity conditions, a detailed comparison of the characteristic bubble phenomena at various levels of gravity was drawn.
Finally, the Marangoni convection at the foot of hydrogen gas bubbles mainly induced by the thermocapillary effect is systematically studied during the bubble evolution, the bubble position oscillations, at horizontal and tilted electrodes both in terrestrial and hyper-g environments. The flow structure progressively modifies with the bubble evolution or during the bubble position oscillations, i.e. as per electric current and bubble geometry variation. The velocity increases both with the bubble size and the electric current magnitude. It reaches up to 50 mm/s and 125 mm/s shortly before the bubble detachment at horizontal and tilted electrodes, correspondingly. The bubble position oscillations characterised by the large variation of the electric current govern the velocity of around ~80 mm/s at the highest and ~40 mm/s at the lowest positions. In the case of tilted electrodes, both in terrestrial and hyper-g environments, the lateral movement of the bubble enables higher values of the current and, therefore, stronger convection. The non-homogeneous distribution of the electric current lines at the tilted electrode results in the asymmetrical Marangoni convection around the bubble. There is a certain limitation in terms of the maximal magnitude of the velocity at different tilt angles, governed by the optimal size of the bubble and electric current. At last, the effects of the particles and laser used for PTV measurements were shown to reduce the duration of the oscillations and to retard the bubble evolution. Both effects were considered during the measurements.
|
2 |
Ein Beitrag zur Verschlackung von MgO in sekundärmetallurgischen SchlackenBrüggmann, Christian 01 March 2012 (has links) (PDF)
Die vorliegende Arbeit behandelt Aspekte der Verschlackung von MgO in sekundärmetall-urgischen Schlacken. Mittels FactSage© wird eine Berechnung der Löslichkeit von MgO in Kalksilikat- und Kalkaluminatschlacke bei 1600, 1650 und 1700°C durchgeführt. Die Ergebnisse werden leicht handhab- und ablesbar dargestellt. Die Verschlackung eines porösen MgO-Probekörpers in einer an MgO ungesättigten und an MgO gesättigten Kalkaluminat-schlacke wird bei 1600°C thermogravimetrisch verfolgt. Der Verschlackungsvorgang wird maßgeblich durch die Mechanismen der Teilchendesintegration und Ostwald-Reifung in der infiltrierten Mikrostruktur beeinflusst. Das komplexe Zusammenspiel von Zerfall und Auflösung wird nach einem Modell von W. Gans an feuerfestes Material (MgO) angepasst und modelliert. Der Einfluss von Teilchendesintegration und Ostwald-Reifung auf den voreilenden Verschleiß im 3-Phasenkontakt (Marangoni-Konvektion) wird quantifiziert. Ferner wird ein einfaches Modell zur Abschätzung des voreilenden Verschleißes dargelegt.
|
3 |
Experimental investigation of the transition of Marangoni convection around a stationary gas bubble towards turbulent flowTadrous, Ebram 14 September 2021 (has links)
In this study, thermocapillary-driven convection around a gas bubble under a horizontal
heated wall is experimentally investigated under gravitational conditions. The thermocapillary
convective flow under conditions beyond the laminar steady state towards turbulent flow is
explored in detail.
Generally, Marangoni convection is more critical and important under microgravity conditions
rather than on earth. Under low gravity, this surface tension induced flow can dictate both heat
and mass transfer processes. Thus, thermocapillary convection should be considered by
manufacturers during material production processes in space. Moreover, temperature gradients
can be purposefully used to eliminate or move bubbles or drops suspended in liquid materials.
In addition to that, thermocapillary convective flow appears in many other applications like
manufacturing of single-walled carbon nanotubes and mono crystal production, to mention only
few examples.
Researchers have always seen Marangoni convection as an interesting topic for both numerical
and experimental studies. Regarding the configuration of the injected gas bubble under a
horizontal heated wall, this physical problem is mainly characterized by a dimensionless
number that represents the ratio of convective heat flow induced by capillary convection to the
heat transfer due to conduction which is termed Marangoni number (Mg). The past decade has
seen different approaches to describe the flow behaviour at high Marangoni numbers. The
thermocapillary flow has been mainly investigated and categorized regarding a stable laminar
behaviour and a non-laminar one, which is characterized by periodic or non-periodic
oscillations. Through previous studies, the point of the transition of the thermocapillary flow
from the periodic oscillatory zone to the non-periodic one has been well investigated. However,
there is a lack of information about this non-periodic behaviour at very high temperature
gradients. Therefore, in the current study, our experimental investigations focus mainly on
exploring different factors affecting the non-periodicity of the Marangoni convection and on
explaining how this flow behaves under conditions above the transitional Marangoni number
(Mg tran ).
The experimental work was launched using a PIV technique and shadowgraphy. In addition to
that, temperature measurements at different locations in the matrix fluid around the air bubble
were conducted to determine the undisturbed temperature gradients at different boundary
conditions. The transient observation of both velocity and temperature measurements at
locations near the bubble allowed deeper insight in the behaviour of the thermocapillary bubbleconvection. Moreover, through shadowgraphy, a qualitative evaluation of the fluid flow
periodicity around the gas bubble was achieved. The implementation of experiments inside a
pressure chamber under gauge pressure conditions formed a novel methodology to enable us
conducting experiments under higher temperature gradients in order to reach high Marangoni
numbers.
The thermocapillary bubble convection was categorized into laminar, periodic oscillatory, and
non-periodic oscillatory flow. The periodic fluid flow oscillations were categorized in
symmetric and asymmetric ones depending on the different applied boundary conditions. The
non-periodic fluid flow oscillations around the gas bubble were also achieved at high
temperature gradients for different bubble aspect ratios. We proved that for every bubble size,
the non-periodic oscillatory state of the fluid flow around the gas bubble undergoes four
different modes (A-D). The last one (phase D) is a developed turbulent state starting at Mg-
numbers of 75000 for the smallest bubble aspect ratio of 1.2 up to the maximal measured Mg-
number of 140000 for a bubble aspect ratio of 2.3. Hence, turbulent thermocapillary bubble
convection was realized and studied in our experimental configuration. Moreover, the
thermocapillary flow driving velocities at the bubble periphery were measured at different
boundary conditions. This study clearly demonstrates that it is the high magnitude of the driving
velocity that initiates the interactions between thermocapillary flow vortices leading finally to
a highly developed oscillation mode (turbulent state) and that buoyancy plays a secondary role
in the described flow configuration.:1 INTRODUCTION
2 LITERATURE REVIEW
3 EXPERIMENTAL SETUP AND METHODOLOGY
4 RESULTS AND DISCUSSION
5 CONCLUSIONS AND RECOMMENDATIONS / In dieser Arbeit wird die thermokapillare Konvektion um eine Gasblase unter einer
horizontal beheizten Wand unter Gravitationsbedingungen experimentell untersucht. Diese
thermokapillare konvektive Strömung jenseits des laminaren stationären Zustands in Richtung
turbulenter Strömung steht in dieser Arbeit im Fokus.
Im Allgemeinen ist die Marangoni-Konvektion unter Schwerelosigkeitsbedingungen kritischer
und wichtiger als auf der Erde. Unter geringen Schwerkraftkräften kann diese durch
Oberflächenspannung induzierte Strömung sowohl Wärme- als auch Stoffübergangsprozesse
maßgeblich
bestimmen.
Daher
sollte
die
thermokapillare
Konvektion
bei
Materialproduktionsprozessen im Weltraum berücksichtigt werden. Darüber hinaus können
Temperaturgradienten gezielt angewendet werden, um in flüssigen Materialien suspendierte
Blasen oder Tropfen zu entfernen oder zu bewegen. Außerdem tritt thermokapillare Strömung
in vielen anderen Anwendungen auf, beispielsweise bei der Herstellung von einwandigen
Kohlenstoffnanoröhren oder der Herstellung von Einkristallen, um nur einige Beispiele zu
nennen.
Forscher haben die Marangoni-Konvektion immer als ein wichtiges und interessantes Thema
für numerische und experimentelle Studien betrachtet. In Bezug auf die Konfiguration der
injizierten Blase unter einer horizontal beheizten Wand wird dieses physikalische Problem
hauptsächlich durch eine dimensionslose Kennzahl, die das Verhältnis des durch
Kapillarkonvektion induzierten konvektiven Wärmeübertragungs zur Wärmeübertragung
durch Leitung darstellt und als Marangoni-Zahl (Mg) bezeichnet wird, definiert. In den letzten
Jahrzehnten wurden verschiedene Ansätze zur Beschreibung des Strömungs-Verhaltens bei
höheren Marangoni-Zahlen verfolgt. Dabei wurde die Thermokapillarströmung grundsätzlich
in ein stabiles laminares und ein nicht laminares (oszillierendes) Verhalten, das durch
periodische oder nicht periodische Geschwindigkeit- und Temperatur-Fluktuationen
gekennzeichnet ist, eingeteilt. Durch frühere Studien wurde das Regime des Übergangs des
thermokapillaren Verhaltens von der periodischen Schwingungszone zur nichtperiodischen gut
untersucht. Es fehlen jedoch immer noch detaillierte Informationen über das nichtperiodische
Verhalten bei sehr hohen Temperaturgradienten. Daher konzentrieren sich unsere
experimentellen Untersuchungen in der vorliegenden Studie hauptsächlich auf die
Untersuchung
verschiedener
Faktoren,
die
die
Nichtperiodizität
der
konvektiven
Thermokapillarströmung beeinflussen, und auf eine Klärung, wie sich diese Strömung unter
verschiedenen Randbedingungen über der kritischen Marangoni-Zahl (Mg c ) verhält.Die experimentelle Arbeit wurde sowohl mit einer PIV-Technik als auch mit der Shadowgraph-
Technik durchgeführt. Darüber hinaus waren Temperaturmessungen auf Sensorbasis an
verschiedenen Stellen in der verwendeten Flüssigkeit um die Luftblase geeignet, um die
ungestörten Temperaturgradienten bei verschiedenen Randbedingungen zu bestimmen. Die
zeitabhängige Messung sowohl von Geschwindigkeiten als auch von Temperaturen an Orten in
der Nähe der Blase lieferte Informationen über das Verhalten der Konvektion der
thermokapillaren Strömung. Darüber hinaus wurde durch die Shadowgraph-Technik eine
qualitative Bewertung der Fluidströmungsperiodizität um die Blase ermöglicht. Die
Durchführung von Experimenten in einer Druckkammer unter Überdruck-Bedingungen bildet
eine neuartige Methode, um solche Experimente unter höheren Temperaturgradienten
durchzuführen
und
höhere
Marangoni-Zahlen
zu
erreichen.
Die
thermokapillare
Blasenkonvektion wurde in dieser Arbeit in laminaren stetigen Flüssigkeitsströmungen,
periodischen und nichtperiodischen oszillierenden Flüssigkeitsströmungen eingeteilt. Die
periodischen Fluidströmungsschwingungen wurden in Abhängigkeit von unterschiedlichen
Randbedingungen in symmetrische und asymmetrische eingeteilt.
Die nichtperiodischen Strömungsoszillationen um die Gasblase wurden auch bei hohen
Temperaturgradienten für verschiedene Blasenaspektverhältnisse erreicht. Wir konnten zeigen,
dass für jede Blasengröße der nichtperiodische Schwingungszustand der Strömung um die
Gasblase vier verschiedene Modi (A-D) besitzen kann. Die letzte (Phase D) ist ein hoch
entwickelter turbulenter Zustand, der bei Mg-Zahlen von 75000 für das kleinste
Blasenaspektverhältnis von 1,2 bis zur maximal gemessenen Mg-Zahl von 140000 für das
Blasenaspektverhältnis von 2,3 beginnt. Der ausgebildete turbulente Zustand der
thermokapillaren Strömung konnte mit unserer experimentellen Konfiguration erstmalig
erreicht werden.
Darüber hinaus konnten die Antriebsgeschwindigkeiten der thermokapillaren Strömung an der
Peripherie der Blase bei verschiedenen Randbedingungen gemessen werden. Diese Studie zeigt
deutlich, dass es die Höhe der Antriebsgeschwindigkeit ist, welche die Wechselwirkungen
zwischen thermokapillaren Strömungswirbeln unterschiedlicher Größe antreibt, die schließlich
zu chaotischen Schwingungen der im Folgenden beschriebenen Grenzlinie führen. Diese Studie
zeigt auch, dass die Auftriebskonvektion in der beschriebenen Strömungskonfiguration eine
untergeordnete Rolle spielt.:1 INTRODUCTION
2 LITERATURE REVIEW
3 EXPERIMENTAL SETUP AND METHODOLOGY
4 RESULTS AND DISCUSSION
5 CONCLUSIONS AND RECOMMENDATIONS
|
4 |
Ein Beitrag zur Verschlackung von MgO in sekundärmetallurgischen SchlackenBrüggmann, Christian 29 April 2011 (has links)
Die vorliegende Arbeit behandelt Aspekte der Verschlackung von MgO in sekundärmetall-urgischen Schlacken. Mittels FactSage© wird eine Berechnung der Löslichkeit von MgO in Kalksilikat- und Kalkaluminatschlacke bei 1600, 1650 und 1700°C durchgeführt. Die Ergebnisse werden leicht handhab- und ablesbar dargestellt. Die Verschlackung eines porösen MgO-Probekörpers in einer an MgO ungesättigten und an MgO gesättigten Kalkaluminat-schlacke wird bei 1600°C thermogravimetrisch verfolgt. Der Verschlackungsvorgang wird maßgeblich durch die Mechanismen der Teilchendesintegration und Ostwald-Reifung in der infiltrierten Mikrostruktur beeinflusst. Das komplexe Zusammenspiel von Zerfall und Auflösung wird nach einem Modell von W. Gans an feuerfestes Material (MgO) angepasst und modelliert. Der Einfluss von Teilchendesintegration und Ostwald-Reifung auf den voreilenden Verschleiß im 3-Phasenkontakt (Marangoni-Konvektion) wird quantifiziert. Ferner wird ein einfaches Modell zur Abschätzung des voreilenden Verschleißes dargelegt.
|
Page generated in 0.0612 seconds