Spelling suggestions: "subject:"arches all��aleatoires"" "subject:"arches all��aléatoires""
1 |
Graphes et marches al��atoiresDe Loynes, Basile 06 July 2012 (has links) (PDF)
L'��tude des marches al ��atoires fait appara��tre des connexions entre leurs propri��t��s alg ebriques, g ��om ��triques ou encore combinatoires et leurs propri��t��s stochastiques. Le premier exemple de telles connexions est donn �� par le th ��or��me de P olya concernant les marches al��atoires aux plus proches voisins sur le groupe Z^N. Si les marches al��atoires sur les groupes - ou sur des espaces homog��nes - fournissent beaucoup d'exemples, il serait appr��ciable d'obtenir de tels r��sultats de rigidit �� sur des structures alg��briques plus faibles telles celles de semi-groupo��de ou de groupo��de. Dans cette th��se il est consid��r�� un exemple de semi-groupo��de et un exemple de groupo��de, tous les deux sont d��fi nis �� partir de sous-graphes contraints du graphe de Cayley d'un groupe - le premier graphe est dirig�� alors que le second ne l'est pas. Pour ce premier exemple, on pr��cise un r��sultat de Campanino et Petritis - ils ont montr�� que la marche al��atoire simple etait transiente pour cet exemple de graphe dirig�� - en d ��terminant la fronti��re de Martin associ ��e �� cette marche et ��tablissant sa trivialit��. Dans le second exemple apparaissant dans ce manuscrit, on consid��re des pavages quasi-p��riodiques de l'espace euclidien obtenus �� l'aide de la m��thode de coupe et projection. Nous consid��rons la marche al��atoire simple le long des ar��tes des polytopes constituant le pavage, et nous r epondons a la question du type de celle-ci, c'est-��-dire nous d��terminons si elle est r��currente ou transiente. Nous montrons ce r esultat en etablissant des in egalit es isop erim etriques. Cette strat egie permet d'obtenir des estim��es de la vitesse de d ecroissance du noyau de la chaleur, ce que n'aurait pas permis l'utilisation d'un crit��re de type Nash-Williams.
|
Page generated in 0.0636 seconds